Suppr超能文献

实时直接分析-质谱法和科恩神经网络在腐肉昆虫幼虫、蛹和成虫生活阶段的物种鉴定中的应用。

Direct Analysis in Real Time-Mass Spectrometry and Kohonen Artificial Neural Networks for Species Identification of Larva, Pupa and Adult Life Stages of Carrion Insects.

机构信息

Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States.

John Jay College of Criminal Justice , 524 West 59th Street , New York , New York 10019 , United States.

出版信息

Anal Chem. 2018 Aug 7;90(15):9206-9217. doi: 10.1021/acs.analchem.8b01704. Epub 2018 Jul 9.

Abstract

Species determination of the various life stages of flies (Order: Diptera) is challenging, particularly for the immature forms, because analogous life stages of different species are difficult to differentiate based on morphological features alone. It is demonstrated here that direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) combined with supervised Kohonen Self-Organizing Maps (SOM) enables accomplishment of species-level identification of larva, pupa, and adult life stages of carrion flies. DART-HRMS data for each life stage were acquired from analysis of ethanol suspensions representing Calliphoridae, Phoridae, and Sarcophagidae families, without additional sample preparation. After preprocessing, the data were subjected to a combination of minimum Redundancy Maximal Relevance (mRMR) and Sparse Discriminant Analysis (SDA) methods to select the most significant variables for creating accurate SOM models. The resulting data were divided into training and validation sets and then analyzed by the SOM method to define the proper discrimination models. The 5-fold venetian blind cross-validation misclassification error was below 7% for all life stages, and the validation samples were correctly identified in all cases. The multiclass SOM model also revealed which chemical components were the most significant markers for each species, with several of these being amino acids. The results show that processing of DART-HRMS data using artificial neural networks (ANNs) based on the Kohonen SOM approach enables rapid discrimination and identification of fly species even for the immature life stages. The ANNs can be continuously expanded to include a larger number of species and can be used to screen DART-HRMS data from unknowns to rapidly determine species identity.

摘要

鉴定蝇类(目:双翅目)各个生活阶段的物种具有挑战性,特别是对于未成熟的形态,因为仅基于形态特征,不同物种的类似生命阶段难以区分。本文证明,实时直接分析-高分辨率质谱(DART-HRMS)结合有监督的柯霍恩自组织映射(SOM)可实现腐肉蝇幼虫、蛹和成虫生活阶段的种水平鉴定。无需额外的样品制备,从代表丽蝇科、麻蝇科和麻蝇科的乙醇悬浮液分析中获得每个生活阶段的 DART-HRMS 数据。预处理后,数据采用最小冗余最大相关性(mRMR)和稀疏判别分析(SDA)方法的组合,选择用于创建准确 SOM 模型的最显著变量。所得数据分为训练集和验证集,然后通过 SOM 方法进行分析,以定义适当的判别模型。所有生活阶段的 5 折威尼斯盲人交叉验证错误分类率均低于 7%,所有验证样本均得到正确识别。多类 SOM 模型还揭示了哪些化学成分是每个物种的最重要标记物,其中一些是氨基酸。结果表明,使用基于柯霍恩 SOM 方法的人工神经网络(ANNs)处理 DART-HRMS 数据可以实现蝇类物种的快速区分和鉴定,即使是对于未成熟的生活阶段。ANNs 可以不断扩展以包括更多的物种,并可用于筛选 DART-HRMS 数据,以快速确定物种身份。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验