Department of Chemistry, Indiana University, Bloomington, IN 47405.
Department of Chemistry, Indiana University, Bloomington, IN 47405
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4424-4429. doi: 10.1073/pnas.1620665114. Epub 2017 Mar 27.
Allosteric communication between two ligand-binding sites in a protein is a central aspect of biological regulation that remains mechanistically unclear. Here we show that perturbations in equilibrium picosecond-nanosecond motions impact zinc (Zn)-induced allosteric inhibition of DNA binding by the Zn efflux repressor CzrA (chromosomal zinc-regulated repressor). DNA binding leads to an unanticipated increase in methyl side-chain flexibility and thus stabilizes the complex entropically; Zn binding redistributes these motions, inhibiting formation of the DNA complex by restricting coupled fast motions and concerted slower motions. Allosterically impaired CzrA mutants are characterized by distinct nonnative fast internal dynamics "fingerprints" upon Zn binding, and DNA binding is weakly regulated. We demonstrate the predictive power of the wild-type dynamics fingerprint to identify key residues in dynamics-driven allostery. We propose that driving forces arising from dynamics can be harnessed by nature to evolve new allosteric ligand specificities in a compact molecular scaffold.
蛋白质两个配体结合位点之间的变构通讯是生物学调控的一个核心方面,但机制仍不清楚。本文中,我们发现平衡态皮秒-纳秒运动的干扰会影响锌(Zn)诱导的 Zn 外排抑制剂 CzrA(染色体 Zn 调控抑制剂)对 DNA 结合的变构抑制。DNA 结合会导致意想不到的甲基侧链柔韧性增加,从而增加复合物的熵稳定性;Zn 结合重新分配这些运动,通过限制偶联快速运动和协同较慢运动来抑制 DNA 复合物的形成。变构受损的 CzrA 突变体在 Zn 结合时表现出独特的非天然快速内部动力学“指纹”,且 DNA 结合的调控作用较弱。我们证明了野生型动力学指纹的预测能力,可以识别动力学驱动变构中的关键残基。我们提出,源于动力学的驱动力可以被自然利用,在紧凑的分子支架中进化出新的变构配体特异性。