Suppr超能文献

肽荷电、取向和浓度对蜂毒素跨膜孔的影响。

Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores.

机构信息

Department of Chemistry, The City College of New York, New York, New York.

Department of Chemistry, The City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.

出版信息

Biophys J. 2018 Jun 19;114(12):2865-2874. doi: 10.1016/j.bpj.2018.05.006.

Abstract

Melittin is a short cationic peptide that exerts cytolytic effects on bacterial and eukaryotic cells. Experiments suggest that in zwitterionic membranes, melittin forms transmembrane toroidal pores supported by four to eight peptides. A recently constructed melittin variant with a reduced cationic charge, MelP5, is active at 10-fold lower concentrations. In previous work, we performed molecular dynamics simulations on the microsecond timescale to examine the supramolecular pore structure of a melittin tetramer in zwitterionic and partially anionic membranes. We now extend that study to include the effects of peptide charge, initial orientation, and number of monomers on the pore formation and stabilization processes. Our results show that parallel transmembrane orientations of melittin and MelP5 are more consistent with experimental data. Whereas a MelP5 parallel hexamer forms a large stable pore during the 5-μs simulation time, a melittin hexamer and an octamer are not fully stable, with several monomers dissociating during the simulation time. Interaction-energy analysis shows that this difference in behavior between melittin and MelP5 is not due to stronger electrostatic repulsion between neighboring melittin peptides but to peptide-lipid interactions that disfavor the isolated MelP5 transmembrane monomer. The ability of melittin monomers to diffuse freely in the 1,2-dimyristoyl-SN-glycero-3-phosphocholine membrane leads to dynamic pores with varying molecularity.

摘要

蜂毒素是一种短的阳离子肽,对细菌和真核细胞具有细胞溶解作用。实验表明,在两性离子膜中,蜂毒素形成由四到八个肽支持的跨膜环形孔。最近构建的带弱电荷的蜂毒素变体 MelP5,其活性浓度低 10 倍。在以前的工作中,我们在微秒时间尺度上进行了分子动力学模拟,以研究两性离子和部分阴离子膜中四聚体蜂毒素的超分子孔结构。我们现在将该研究扩展到包括肽电荷、初始取向和单体数量对孔形成和稳定过程的影响。我们的结果表明,蜂毒素和 MelP5 的平行跨膜取向与实验数据更一致。虽然平行六聚体的 MelP5 在 5 微秒的模拟时间内形成一个大的稳定孔,但六聚体和八聚体的蜂毒素并不完全稳定,在模拟过程中有几个单体解离。相互作用能分析表明,蜂毒素和 MelP5 之间行为的这种差异不是由于相邻蜂毒素肽之间更强的静电排斥,而是由于肽-脂相互作用不利于孤立的 MelP5 跨膜单体。蜂毒素单体在 1,2-二肉豆蔻酰-SN-甘油-3-磷酸胆碱膜中自由扩散的能力导致具有不同分子数的动态孔。

相似文献

1
Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores.
Biophys J. 2018 Jun 19;114(12):2865-2874. doi: 10.1016/j.bpj.2018.05.006.
2
Antimicrobial peptides in toroidal and cylindrical pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.
3
The structure of a melittin-stabilized pore.
Biophys J. 2015 May 19;108(10):2424-2426. doi: 10.1016/j.bpj.2015.04.006.
4
Single channel planar lipid bilayer recordings of the melittin variant MelP5.
Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2051-2057. doi: 10.1016/j.bbamem.2017.07.005. Epub 2017 Jul 15.
6
What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives.
Biophys J. 2020 Apr 21;118(8):1901-1913. doi: 10.1016/j.bpj.2020.02.024. Epub 2020 Mar 3.
7
Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide.
J Am Chem Soc. 2014 Mar 26;136(12):4724-31. doi: 10.1021/ja500462s. Epub 2014 Mar 13.
8
Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers.
J Membr Biol. 2015 Jun;248(3):497-503. doi: 10.1007/s00232-015-9807-8. Epub 2015 May 12.
9
Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers.
Langmuir. 2018 Jul 17;34(28):8393-8399. doi: 10.1021/acs.langmuir.8b00804. Epub 2018 Jul 9.
10
Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy.
Biochem Biophys Res Commun. 2006 Apr 28;343(1):222-8. doi: 10.1016/j.bbrc.2006.02.090. Epub 2006 Feb 24.

引用本文的文献

1
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides.
Antibiotics (Basel). 2025 Apr 22;14(5):422. doi: 10.3390/antibiotics14050422.
2
Melittin can permeabilize membranes via large transient pores.
Nat Commun. 2024 Aug 23;15(1):7281. doi: 10.1038/s41467-024-51691-1.
3
Structural Determinants of Peptide Nanopore Formation.
ACS Nano. 2024 Jun 18;18(24):15831-15844. doi: 10.1021/acsnano.4c02824. Epub 2024 Jun 6.
4
Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands.
J Nanobiotechnology. 2024 May 17;22(1):260. doi: 10.1186/s12951-024-02511-7.
5
Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy.
Front Pharmacol. 2024 Feb 2;15:1345281. doi: 10.3389/fphar.2024.1345281. eCollection 2024.
6
Antiviral attributes of bee venom as a possible therapeutic approach against SARS-CoV-2 infection.
Future Virol. 2023 Oct. doi: 10.2217/fvl-2023-0127. Epub 2023 Nov 7.
7
Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides.
Curr Pharm Biotechnol. 2024;25(8):1041-1057. doi: 10.2174/0113892010194428231017051836.
8
The role of peptides in reversing chemoresistance of breast cancer: current facts and future prospects.
Front Pharmacol. 2023 May 22;14:1188477. doi: 10.3389/fphar.2023.1188477. eCollection 2023.
9
Organizations of melittin peptides after spontaneous penetration into cell membranes.
Biophys J. 2022 Nov 15;121(22):4368-4381. doi: 10.1016/j.bpj.2022.10.002. Epub 2022 Oct 4.
10
Single-molecule phospholipase A becomes processive on melittin-induced membrane deformations.
Biophys J. 2022 Apr 19;121(8):1417-1423. doi: 10.1016/j.bpj.2022.03.019. Epub 2022 Mar 18.

本文引用的文献

1
Self-association of a highly charged arginine-rich cell-penetrating peptide.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11428-11433. doi: 10.1073/pnas.1712078114. Epub 2017 Oct 11.
2
Single channel planar lipid bilayer recordings of the melittin variant MelP5.
Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2051-2057. doi: 10.1016/j.bbamem.2017.07.005. Epub 2017 Jul 15.
3
Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
Biophys J. 2017 Jul 11;113(1):73-81. doi: 10.1016/j.bpj.2017.04.056.
5
pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides.
J Am Chem Soc. 2017 Jan 18;139(2):937-945. doi: 10.1021/jacs.6b11447. Epub 2017 Jan 5.
7
Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration.
J Phys Chem Lett. 2016 Jul 7;7(13):2394-401. doi: 10.1021/acs.jpclett.6b01006. Epub 2016 Jun 15.
8
Pore Structure and Synergy in Antimicrobial Peptides of the Magainin Family.
PLoS Comput Biol. 2016 Jan 4;12(1):e1004570. doi: 10.1371/journal.pcbi.1004570. eCollection 2016 Jan.
9
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
10
Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.
J Phys Chem B. 2015 Aug 20;119(33):10390-8. doi: 10.1021/acs.jpcb.5b03254. Epub 2015 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验