Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
Asthma UK Centre for Applied Research, Edinburgh and Swansea, UK.
NPJ Prim Care Respir Med. 2018 Jun 20;28(1):22. doi: 10.1038/s41533-018-0088-4.
Asthma and chronic obstructive pulmonary disease (COPD) are two common different clinical diagnoses with overlapping clinical features. Both conditions have been increasingly studied using electronic health records (EHR). Asthma-COPD overlap syndrome (ACOS) is an emerging concept where clinical features from both conditions co-exist, and for which, however, there is no consensus definition. Nonetheless, we expect EHR data of people with ACOS to be systematically different from those with "asthma only" or "COPD only". We aim to develop a latent class model to understand the overlap between asthma and COPD in EHR data. From the Secure Anonymised Information Linkage (SAIL) databank, we will use routinely collected primary care data recorded in or before 2014 in Wales for people who aged 40 years or more on 1st Jan 2014. Based on this latent class model, we will train a classification algorithm and compare its performance with commonly used objective and self-reported case definitions for asthma and COPD. The resulting classification algorithm is intended to be used to identify people with ACOS, 'asthma only', and 'COPD only' in primary care datasets.
哮喘和慢性阻塞性肺疾病(COPD)是两种具有重叠临床特征的常见不同临床诊断。这两种疾病都越来越多地使用电子健康记录(EHR)进行研究。哮喘-COPD 重叠综合征(ACOS)是一个新出现的概念,其临床特征同时存在于两种疾病中,但目前尚无共识定义。尽管如此,我们预计患有 ACOS 的人的 EHR 数据将与仅患有“哮喘”或仅患有“COPD”的人的数据有系统差异。我们旨在开发一种潜在类别模型来理解 EHR 数据中哮喘和 COPD 之间的重叠。从 Secure Anonymised Information Linkage(SAIL)数据库中,我们将使用 2014 年或之前在威尔士记录的常规收集的初级保健数据,针对 2014 年 1 月 1 日年龄在 40 岁或以上的人群。基于这个潜在类别模型,我们将训练一个分类算法,并将其性能与常用于哮喘和 COPD 的客观和自我报告的病例定义进行比较。所得分类算法旨在用于在初级保健数据集识别患有 ACOS、“仅哮喘”和“仅 COPD”的人群。