Suppr超能文献

QM/MM 研究 Dph5 - 真核生物二氢尿嘧啶生物合成途径中的一个混杂甲基转移酶。

QM/MM Studies of Dph5 - A Promiscuous Methyltransferase in the Eukaryotic Biosynthetic Pathway of Diphthamide.

机构信息

Department of Chemistry and Molecular Biology , University of Gothenburg , 405 30 Göteborg , Sweden.

Computational Chemistry and Biology Group, Facultad de Química , Universidad de la República , 11800 Montevideo , Uruguay.

出版信息

J Chem Inf Model. 2018 Jul 23;58(7):1406-1414. doi: 10.1021/acs.jcim.8b00217. Epub 2018 Jul 3.

Abstract

Eukaryotic diphthine synthase, Dph5, is a promiscuous methyltransferase that catalyzes an extraordinary N, O-tetramethylation of 2-(3-carboxy-3-aminopropyl)-l-histidine (ACP) to yield diphthine methyl ester (DTM). These are intermediates in the biosynthesis of the post-translationally modified histidine residue diphthamide (DTA), a unique and essential residue part of the eukaryotic elongation factor 2 (eEF2). Herein, the promiscuity of Saccharomyces cerevisiae Dph5 has been studied with in silico approaches, including homology modeling to provide the structure of Dph5, protein-protein docking and molecular dynamics to construct the Dph5-eEF2 complex, and quantum mechanics/molecular mechanics (QM/MM) calculations to outline a plausible mechanism. The calculations show that the methylation of ACP follows a typical S2 mechanism, initiating with a complete methylation (trimethylation) at the N-position, followed by the single O-methylation. For each of the three N-methylation reactions, our calculations support a stepwise mechanism, which first involve proton transfer through a bridging water to a conserved aspartate residue D165, followed by a methyl transfer. Once fully methylated, the trimethyl amino group forms a weak electrostatic interaction with D165, which allows the carboxylate group of diphthine to attain the right orientation for the final methylation step to be accomplished.

摘要

真核生物二氢嘧啶合成酶 Dph5 是一种具有广泛底物特异性的甲基转移酶,它能催化 2-(3-羧基-3-氨基丙基)-l-组氨酸(ACP)发生非常特殊的 N、O-四甲基化反应,生成二氢嘧啶甲酯(DTM)。这些是翻译后修饰组氨酸残基二氢嘧啶(DTA)生物合成的中间产物,DTA 是真核延伸因子 2(eEF2)中独特且必需的残基部分。在此,我们采用计算机模拟方法研究了酿酒酵母 Dph5 的广泛底物特异性,包括同源建模以提供 Dph5 的结构、蛋白质-蛋白质对接和分子动力学以构建 Dph5-eEF2 复合物,以及量子力学/分子力学(QM/MM)计算以概述可能的机制。计算表明,ACP 的甲基化遵循典型的 S2 机制,首先在 N 位完成完全甲基化(三甲基化),然后进行单 O-甲基化。对于三个 N-甲基化反应中的每一个,我们的计算都支持逐步机制,该机制首先涉及通过桥接水向保守的天冬氨酸残基 D165 转移质子,然后进行甲基转移。一旦完全甲基化,三甲基氨基基团与 D165 形成弱静电相互作用,这使得二氢嘧啶的羧酸盐基团能够获得正确的取向,从而完成最后一步的甲基化反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验