Suppr超能文献

抑郁症患者的脑电图α波不对称性:当前观点

Electroencephalogram alpha asymmetry in patients with depressive disorders: current perspectives.

作者信息

Kaiser Andreas Kurt, Gnjezda Maria-Theresa, Knasmüller Stephanie, Aichhorn Wolfgang

机构信息

Department of Clinical Psychology, Salzburger Landeskliniken Betriebs-GesmbH, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria.

Department of Psychiatry, Salzburger Landeskliniken Betriebs-GesmbH, Christian-Doppler-Klinik, Paracelsus Medical University, Salzburg, Austria.

出版信息

Neuropsychiatr Dis Treat. 2018 Jun 11;14:1493-1504. doi: 10.2147/NDT.S137776. eCollection 2018.

Abstract

PURPOSE

Electroencephalogram (EEG) alpha asymmetry (AA) in depressive disorders has been of interest over the last few decades, but it continues to remain unclear whether EEG AA can discriminate between healthy and depressive individuals.

MATERIALS AND METHODS

A systematic literature search for papers addressing EEG AA using the keywords alpha asymmetry, depression, and EEG was performed in PubMed. All studies were checked for sample size, gender, handedness, reference, recording protocol, EEG band range, impedance, type of analysis, drugs, and comorbidity.

RESULTS

A total of 61 articles were found, of which 44 met our inclusion criteria. They have been consecutively analyzed in respect of methodology and results. Approximately 25% (11/44) of the studies did not mention or ignored handedness, 41% (18/44) of the studies used data with only self-reported handedness, and only 34.1% (15/44) of all studies tested handedness. Only 35% (15/44) of the studies reported pharmacological treatment, and only 35% (15/44) of the studies controlled for medication. A total of 52% (23/44) of the studies reported comorbidity, and only 30% (13/44) of the studies controlled for comorbidity. Only 29.6% (13/44) of the studies reported education. In all, 30.5% (13/44) of the studies analyzed group differences and correlations, while 15.9 (7/44) of the studies used only correlational analyses. A total of 52.3% (23/44) of the studies analyzed only group differences. Alpha range was fixed (8-13 Hz) in 59.1% (26/44) of all studies. Reference to common average was used in seven of 44 studies (15.9%). In all, nine of 44 (20.5%) studies used the midline central position as reference, 22 of 44 (50%) studies used the ear or the mastoid as reference, and four of 44 (9.1%) studies used the nose as reference.

CONCLUSION

Discriminative power of EEG AA for depressed and healthy controls remains unclear. A systematic analysis of 44 studies revealed that differences in methodology and disregarding proper sampling are problematic. Ignoring handedness, gender, age, medication, and comorbidity could explain inconsistent findings. Hence, we formulated a guideline for requirements for future studies on EEG AA in order to allow for better comparisons.

摘要

目的

在过去几十年中,抑郁症患者的脑电图(EEG)α波不对称性(AA)一直备受关注,但EEG AA能否区分健康个体和抑郁个体仍不清楚。

材料与方法

在PubMed中使用关键词“α波不对称性”“抑郁症”和“脑电图”对涉及EEG AA的论文进行系统的文献检索。检查所有研究的样本量、性别、利手、参考标准、记录方案、EEG频段范围、阻抗、分析类型、药物和合并症情况。

结果

共检索到61篇文章,其中44篇符合纳入标准。对这些研究的方法和结果进行了连续分析。约25%(11/44)的研究未提及或忽略了利手情况,41%(18/44)的研究仅使用自我报告的利手数据,所有研究中只有34.1%(15/44)对利手进行了检测。只有35%(15/44)的研究报告了药物治疗情况,只有35%(15/44)的研究对药物进行了控制。共有52%(23/44)的研究报告了合并症情况,只有30%(13/44)的研究对合并症进行了控制。只有29.6%(13/44)的研究报告了受教育程度。总体而言,30.5%(13/44)的研究分析了组间差异和相关性,而15.9%(7/44)的研究仅使用了相关性分析。共有52.3%(23/44)的研究仅分析了组间差异。在所有研究中,59.1%(26/44)的研究将α波范围固定为8 - 13 Hz。44项研究中有7项(15.9%)采用了平均公共参考标准。在所有44项研究中,9项(20.5%)使用中线中央位置作为参考,22项(50%)使用耳朵或乳突作为参考,4项(9.1%)使用鼻子作为参考。

结论

EEG AA对抑郁症患者和健康对照的鉴别能力仍不清楚。对44项研究的系统分析表明,方法学差异和忽视适当抽样存在问题。忽略利手、性别、年龄、药物和合并症可能解释了研究结果的不一致性。因此,我们制定了一份关于未来EEG AA研究要求的指南,以便进行更好的比较。

相似文献

9

引用本文的文献

10
EEG-responses to mood induction interact with seasonality and age.脑电图对情绪诱导的反应与季节和年龄相互作用。
Front Psychiatry. 2022 Aug 9;13:950328. doi: 10.3389/fpsyt.2022.950328. eCollection 2022.

本文引用的文献

9
Anticipatory reward deficits in melancholia.忧郁症中的预期奖励缺陷。
J Abnorm Psychol. 2016 Jul;125(5):631-40. doi: 10.1037/abn0000172. Epub 2016 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验