Suppr超能文献

理解自组装肽与溶液离子之间的相互作用,以实现可调节的蛋白质纳米颗粒的形成。

Understanding the Interplay between Self-Assembling Peptides and Solution Ions for Tunable Protein Nanoparticle Formation.

机构信息

Department of Chemical Engineering , Monash University , Wellington Road , Clayton , VIC 3800 , Australia.

出版信息

ACS Nano. 2018 Jul 24;12(7):6956-6967. doi: 10.1021/acsnano.8b02381. Epub 2018 Jun 28.

Abstract

Protein-based nanomaterials are gaining importance in biomedical and biosensor applications where tunability of the protein particle size is highly desirable. Rationally designed proteins and peptides offer control over molecular interactions between monomeric protein units to modulate their self-assembly and thus particle formation. Here, using an example enzyme-peptide system produced as a single construct by bacterial expression, we explore how solution conditions affect the formation and size of protein nanoparticles. We found two independent routes to particle formation, one facilitated by charge interactions between protein-peptide and peptide-peptide exemplified by pH change or the presence of NO or NH and the second route via metal-ion coordination ( e.g., Mg) within peptides. We further demonstrate that the two independent factors of pH and Mg ions can be combined to regulate nanoparticle size. Charge interactions between protein-peptide monomers play a key role in either promoting or suppressing protein assembly; the intermolecular contact points within protein-peptide monomers involved in nanoparticle formation were identified by chemical cross-linking mass spectrometry. Importantly, the protein nanoparticles retain their catalytic activities, suggesting that their native structures are unaffected. Once formed, protein nanoparticles remain stable over long periods of storage or with changed solution conditions. Nevertheless, formation of nanoparticles is also reversible-they can be disassembled by desalting the buffer to remove complexing agents ( e.g., Mg). This study defines the factors controlling formation of protein nanoparticles driven by self-assembly peptides and an understanding of complex ion-peptide interactions involved within, offering a convenient approach to tailor protein nanoparticles without changing amino acid sequence.

摘要

蛋白质纳米材料在生物医学和生物传感器应用中越来越重要,在这些应用中,蛋白质颗粒大小的可调节性是非常理想的。经过合理设计的蛋白质和肽可以控制单体蛋白质单元之间的分子相互作用,从而调节它们的自组装和颗粒形成。在这里,我们使用通过细菌表达产生的单一结构的酶-肽系统作为示例,探索了溶液条件如何影响蛋白质纳米颗粒的形成和大小。我们发现了两种独立的颗粒形成途径,一种是由蛋白质-肽和肽-肽之间的电荷相互作用促进的,例如 pH 值变化或存在 NO 或 NH,另一种途径是通过肽内的金属离子配位(例如 Mg)。我们进一步证明,pH 和 Mg 离子这两个独立因素可以结合起来调节纳米颗粒的大小。蛋白质-肽单体之间的电荷相互作用在促进或抑制蛋白质组装中起着关键作用;通过化学交联质谱鉴定了参与纳米颗粒形成的蛋白质-肽单体之间的分子间接触点。重要的是,蛋白质纳米颗粒保留其催化活性,表明其天然结构不受影响。一旦形成,蛋白质纳米颗粒在长时间储存或溶液条件改变时仍然稳定。然而,纳米颗粒的形成也是可逆的——可以通过脱盐缓冲液去除络合剂(例如 Mg)来将其拆开。这项研究定义了由自组装肽驱动的蛋白质纳米颗粒形成的控制因素,并深入了解了所涉及的复杂离子-肽相互作用,为在不改变氨基酸序列的情况下定制蛋白质纳米颗粒提供了一种便捷的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验