Roamcharern Napaporn, Brady Daniel J, Parkinson John A, Rattray Zahra, Seib F Philipp
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE, Scotland, U.K.
Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.
ACS Appl Bio Mater. 2025 Aug 18;8(8):6854-6864. doi: 10.1021/acsabm.5c00598. Epub 2025 Aug 7.
Silk fibroin is a promising biomaterial for nanocarrier-based drug delivery due to its biocompatibility, biodegradability, and tunable mechanical properties. In addition, the silk protein is amenable to various processing strategies, offering flexibility for optimizing particle characteristics. Emerging evidence highlights that metal ions can modulate silk conformation and structure in the silk gland, as well as influencing self-assembly, potentially impacting silk nanoparticle fabrication. Our previous study highlighted the potential of Ca in silk nanoparticle fabrication. However, other metal ions in the silk gland influence silk fibroin behavior too. Here, we investigate how potassium ions (K), with similar abundance to Ca in the silkworm gland, influence silk nanoparticle formation as modulators of self-assembly and material properties, aiming to produce nanoparticles with distinct physicochemical profiles. We show that K enhances silk assembly, increases nanoparticle size, alters surface charge (zeta potential), and boosts production yield, thereby minimizing silk wastage during silk nanoparticle preparation. Potassium ions also significantly improve payload encapsulation efficiency, making K inclusion valuable for a range of drug-loading applications. The resulting silk nanoparticles exhibit reduced toxicity and inflammatory response, highlighting their promise as safe and effective nanocarrier candidates for drug delivery. Our findings establish K as a fundamental yet powerful tool for tuning silk nanoparticle properties to meet pharmaceutical needs.
由于具有生物相容性、生物降解性和可调节的机械性能,丝素蛋白是一种用于基于纳米载体的药物递送的有前景的生物材料。此外,丝蛋白适合各种加工策略,为优化颗粒特性提供了灵活性。新出现的证据表明,金属离子可以调节丝腺中丝的构象和结构,以及影响自组装,这可能会影响丝纳米颗粒的制造。我们之前的研究强调了钙在丝纳米颗粒制造中的潜力。然而,丝腺中的其他金属离子也会影响丝素蛋白的行为。在这里,我们研究了在蚕腺中与钙含量相似的钾离子(K)如何作为自组装和材料特性的调节剂影响丝纳米颗粒的形成,旨在生产具有不同物理化学特性的纳米颗粒。我们表明,钾增强了丝的组装,增加了纳米颗粒的尺寸,改变了表面电荷(zeta电位),并提高了产量,从而最大限度地减少了丝纳米颗粒制备过程中的丝浪费。钾离子还显著提高了药物负载封装效率,这使得钾的加入对于一系列药物负载应用具有价值。所得的丝纳米颗粒表现出降低的毒性和炎症反应,突出了它们作为安全有效的药物递送纳米载体候选物的前景。我们的研究结果确立了钾作为一种基本但强大的工具,用于调节丝纳米颗粒的特性以满足制药需求。