Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Science. 2018 Jun 22;360(6395). doi: 10.1126/science.aao4927.
A systems view of G protein-coupled receptor (GPCR) signaling in its native environment is central to the development of GPCR therapeutics with fewer side effects. Using the kappa opioid receptor (KOR) as a model, we employed high-throughput phosphoproteomics to investigate signaling induced by structurally diverse agonists in five mouse brain regions. Quantification of 50,000 different phosphosites provided a systems view of KOR in vivo signaling, revealing novel mechanisms of drug action. Thus, we discovered enrichment of the mechanistic target of rapamycin (mTOR) pathway by U-50,488H, an agonist causing aversion, which is a typical KOR-mediated side effect. Consequently, mTOR inhibition during KOR activation abolished aversion while preserving beneficial antinociceptive and anticonvulsant effects. Our results establish high-throughput phosphoproteomics as a general strategy to investigate GPCR in vivo signaling, enabling prediction and modulation of behavioral outcomes.
从系统的角度来看,G 蛋白偶联受体(GPCR)在其天然环境中的信号转导对于开发副作用更少的 GPCR 疗法至关重要。我们以 κ 阿片受体(KOR)为模型,采用高通量磷酸化蛋白质组学方法研究了结构多样的激动剂在五个小鼠脑区诱导的信号转导。对 50,000 个不同磷酸化位点的定量分析为 KOR 在体内信号转导提供了系统的视角,揭示了药物作用的新机制。因此,我们发现 U-50,488H 引起厌恶的激动剂会使雷帕霉素(mTOR)途径富集,mTOR 是一种典型的 KOR 介导的副作用。因此,在 KOR 激活期间抑制 mTOR 可消除厌恶,同时保留有益的镇痛和抗惊厥作用。我们的研究结果确立了高通量磷酸化蛋白质组学作为研究 GPCR 体内信号转导的一般策略,能够预测和调节行为结果。