Ruiz-Gonzalez Maria, Bora Vaibhav, Furenlid Lars R
Center for Gamma-Ray Imaging and College of Optical Sciences, University of Arizona, Tucson, AZ 85724, USA.
IEEE Trans Radiat Plasma Med Sci. 2018 Jan;2(1):1-6. doi: 10.1109/TRPMS.2017.2765316. Epub 2017 Oct 23.
Including time-of-flight information in positron emission tomography (PET) reconstruction increases the signal-to-noise ratio if the timing information is sufficiently accurate. We estimate timing information by analyzing sampled waveforms, where the sampling frequency and number of samples acquired affect the accuracy of timing estimation. An efficient data-acquisition system acquires the minimum number of samples that contains the most timing information for a desired resolution. We describe a maximum-likelihood (ML) estimation algorithm to assign a time stamp to digital pulses. The method is based on a contracting-grid search algorithm that can be implemented in a field-programmable gate array and in graphics processing units. The Fisher-information (FI) matrix quantifies the amount of timing information that can be extracted from the waveforms. FI analyses on different segments of the waveform allow us to determine the smallest amount of data that we need to acquire in order to obtain a desired timing resolution. We describe the model and the procedure used to simulate waveforms for ML estimation and FI analysis, the ML-estimation algorithm and the timing resolution obtained from experimental data using a LaBr:Ce crystal and two photomultiplier tubes. The results show that for lengthening segments of the pulse, timing resolution approaches a limit. We explored the method as a function of sampling frequency and compared the results to other digital time pickoff methods. This information will be used to build an efficient data-acquisition system with reduced complexity and cost that nonetheless preserves full timing performance.
如果正电子发射断层扫描(PET)重建中的飞行时间信息足够准确,那么将其包含在内会提高信噪比。我们通过分析采样波形来估计时间信息,其中采样频率和采集的样本数量会影响时间估计的准确性。一个高效的数据采集系统会采集包含所需分辨率下最多时间信息的最少样本数量。我们描述了一种最大似然(ML)估计算法,用于为数字脉冲分配时间戳。该方法基于一种收缩网格搜索算法,可在现场可编程门阵列和图形处理单元中实现。费舍尔信息(FI)矩阵量化了可从波形中提取的时间信息量。对波形不同部分的FI分析使我们能够确定为获得所需时间分辨率而需要采集的最小数据量。我们描述了用于模拟波形以进行ML估计和FI分析的模型及过程、ML估计算法以及使用溴化镧铈(LaBr:Ce)晶体和两个光电倍增管从实验数据中获得的时间分辨率。结果表明,对于脉冲的延长部分,时间分辨率接近一个极限。我们研究了该方法作为采样频率的函数,并将结果与其他数字时间提取方法进行了比较。这些信息将用于构建一个复杂度和成本降低但仍能保持完整时间性能的高效数据采集系统。