Suppr超能文献

闪烁脉冲定时的最大似然估计

Maximum-Likelihood Estimation of Scintillation Pulse Timing.

作者信息

Ruiz-Gonzalez Maria, Bora Vaibhav, Furenlid Lars R

机构信息

Center for Gamma-Ray Imaging and College of Optical Sciences, University of Arizona, Tucson, AZ 85724, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2018 Jan;2(1):1-6. doi: 10.1109/TRPMS.2017.2765316. Epub 2017 Oct 23.

Abstract

Including time-of-flight information in positron emission tomography (PET) reconstruction increases the signal-to-noise ratio if the timing information is sufficiently accurate. We estimate timing information by analyzing sampled waveforms, where the sampling frequency and number of samples acquired affect the accuracy of timing estimation. An efficient data-acquisition system acquires the minimum number of samples that contains the most timing information for a desired resolution. We describe a maximum-likelihood (ML) estimation algorithm to assign a time stamp to digital pulses. The method is based on a contracting-grid search algorithm that can be implemented in a field-programmable gate array and in graphics processing units. The Fisher-information (FI) matrix quantifies the amount of timing information that can be extracted from the waveforms. FI analyses on different segments of the waveform allow us to determine the smallest amount of data that we need to acquire in order to obtain a desired timing resolution. We describe the model and the procedure used to simulate waveforms for ML estimation and FI analysis, the ML-estimation algorithm and the timing resolution obtained from experimental data using a LaBr:Ce crystal and two photomultiplier tubes. The results show that for lengthening segments of the pulse, timing resolution approaches a limit. We explored the method as a function of sampling frequency and compared the results to other digital time pickoff methods. This information will be used to build an efficient data-acquisition system with reduced complexity and cost that nonetheless preserves full timing performance.

摘要

如果正电子发射断层扫描(PET)重建中的飞行时间信息足够准确,那么将其包含在内会提高信噪比。我们通过分析采样波形来估计时间信息,其中采样频率和采集的样本数量会影响时间估计的准确性。一个高效的数据采集系统会采集包含所需分辨率下最多时间信息的最少样本数量。我们描述了一种最大似然(ML)估计算法,用于为数字脉冲分配时间戳。该方法基于一种收缩网格搜索算法,可在现场可编程门阵列和图形处理单元中实现。费舍尔信息(FI)矩阵量化了可从波形中提取的时间信息量。对波形不同部分的FI分析使我们能够确定为获得所需时间分辨率而需要采集的最小数据量。我们描述了用于模拟波形以进行ML估计和FI分析的模型及过程、ML估计算法以及使用溴化镧铈(LaBr:Ce)晶体和两个光电倍增管从实验数据中获得的时间分辨率。结果表明,对于脉冲的延长部分,时间分辨率接近一个极限。我们研究了该方法作为采样频率的函数,并将结果与其他数字时间提取方法进行了比较。这些信息将用于构建一个复杂度和成本降低但仍能保持完整时间性能的高效数据采集系统。

相似文献

1
Maximum-Likelihood Estimation of Scintillation Pulse Timing.
IEEE Trans Radiat Plasma Med Sci. 2018 Jan;2(1):1-6. doi: 10.1109/TRPMS.2017.2765316. Epub 2017 Oct 23.
2
Potentials of Digitally Sampling Scintillation Pulses in Timing Determination in PET.
IEEE Trans Nucl Sci. 2009 Oct 6;56(5):2607-2613. doi: 10.1109/TNS.2009.2023656.
3
Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements.
Phys Med Biol. 2015 Jul 7;60(13):5141-61. doi: 10.1088/0031-9155/60/13/5141. Epub 2015 Jun 17.
4
5
FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery.
IEEE Trans Nucl Sci. 2012 Oct;59(5). doi: 10.1109/TNS.2012.2207403.
6
A Multi-Threshold Sampling Method for TOF PET Signal Processing.
Nucl Instrum Methods Phys Res A. 2009 Apr 21;602(2):618-621. doi: 10.1016/j.nima.2009.01.100.
7
Time-based signal sampling using sawtooth-shaped threshold.
Phys Med Biol. 2019 Jun 20;64(12):125020. doi: 10.1088/1361-6560/ab1f23.
8
Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI.
Phys Med Biol. 2015 May 7;60(9):3549-65. doi: 10.1088/0031-9155/60/9/3549. Epub 2015 Apr 10.
9
Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.
IEEE Trans Med Imaging. 2016 Nov;35(11):2436-2446. doi: 10.1109/TMI.2016.2577539. Epub 2016 Jun 7.
10
Timing and Energy Resolution of new near-UV SiPMs coupled to LaBr:Ce for TOF-PET.
IEEE Trans Nucl Sci. 2014 Oct;61(5):2426-2432. doi: 10.1109/TNS.2014.2346579.

引用本文的文献

2
Innovations in Instrumentation for Positron Emission Tomography.
Semin Nucl Med. 2018 Jul;48(4):311-331. doi: 10.1053/j.semnuclmed.2018.02.006. Epub 2018 Mar 12.
3
An edge-readout, multilayer detector for positron emission tomography.
Med Phys. 2018 Jun;45(6):2425-2438. doi: 10.1002/mp.12906. Epub 2018 May 6.
4
Using convolutional neural networks to estimate time-of-flight from PET detector waveforms.
Phys Med Biol. 2018 Jan 11;63(2):02LT01. doi: 10.1088/1361-6560/aa9dc5.

本文引用的文献

1
Advances in coincidence time resolution for PET.
Phys Med Biol. 2016 Mar 21;61(6):2255-64. doi: 10.1088/0031-9155/61/6/2255. Epub 2016 Feb 25.
2
Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements.
Phys Med Biol. 2015 Jul 7;60(13):5141-61. doi: 10.1088/0031-9155/60/13/5141. Epub 2015 Jun 17.
3
Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca.
Phys Med Biol. 2015 Jun 21;60(12):4635-49. doi: 10.1088/0031-9155/60/12/4635. Epub 2015 May 28.
4
The lower timing resolution bound for scintillators with non-negligible optical photon transport time in time-of-flight PET.
Phys Med Biol. 2014 Oct 21;59(20):6215-29. doi: 10.1088/0031-9155/59/20/6215. Epub 2014 Sep 26.
5
Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation.
Phys Med Biol. 2013 May 21;58(10):3243-57. doi: 10.1088/0031-9155/58/10/3243. Epub 2013 Apr 24.
6
The lower bound on the timing resolution of scintillation detectors.
Phys Med Biol. 2012 Apr 7;57(7):1797-814. doi: 10.1088/0031-9155/57/7/1797. Epub 2012 Mar 13.
7
Focus on time-of-flight PET: the benefits of improved time resolution.
Eur J Nucl Med Mol Imaging. 2011 Jun;38(6):1147-57. doi: 10.1007/s00259-010-1711-y. Epub 2011 Jan 13.
8
Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm.
IEEE Trans Nucl Sci. 2010 Jun 1;57(3):1077-1084. doi: 10.1109/TNS.2010.2045898.
9
LaBr(3):Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time.
Phys Med Biol. 2010 Apr 7;55(7):N179-89. doi: 10.1088/0031-9155/55/7/N02. Epub 2010 Mar 19.
10
Maximum-Likelihood Methods for Processing Signals From Gamma-Ray Detectors.
IEEE Trans Nucl Sci. 2009 Jun 1;56(3):725. doi: 10.1109/tns.2009.2015308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验