Barrett Harrison H, Hunter William C J, Miller Brian William, Moore Stephen K, Chen Yichun, Furenlid Lars R
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson, AZ 85724 USA. They are also with the College of Optical Sciences, University of Arizona, Tucson, AZ 85721 USA (
IEEE Trans Nucl Sci. 2009 Jun 1;56(3):725. doi: 10.1109/tns.2009.2015308.
In any gamma-ray detector, each event produces electrical signals on one or more circuit elements. From these signals, we may wish to determine the presence of an interaction; whether multiple interactions occurred; the spatial coordinates in two or three dimensions of at least the primary interaction; or the total energy deposited in that interaction. We may also want to compute listmode probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and in some senses optimal approach to extracting this information, and the associated Fisher information matrix provides a way of quantifying and optimizing the information conveyed by the detector. This paper will review the principles of likelihood methods as applied to gamma-ray detectors and illustrate their power with recent results from the Center for Gamma-ray Imaging.
在任何伽马射线探测器中,每个事件都会在一个或多个电路元件上产生电信号。从这些信号中,我们可能希望确定是否存在相互作用;是否发生了多次相互作用;至少主要相互作用在二维或三维空间中的坐标;或者该相互作用中沉积的总能量。我们还可能希望计算用于断层重建的列表模式概率。最大似然方法为提取这些信息提供了一种严格且在某些意义上最优的方法,并且相关的费舍尔信息矩阵提供了一种量化和优化探测器所传达信息的方式。本文将回顾应用于伽马射线探测器的似然方法原理,并用伽马射线成像中心的最新结果说明其威力。