Suppr超能文献

整合共进化信号和残基对的其他性质,以区分生物界面和晶体接触。

Integrating co-evolutionary signals and other properties of residue pairs to distinguish biological interfaces from crystal contacts.

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074, P. R. China.

出版信息

Protein Sci. 2018 Sep;27(9):1723-1735. doi: 10.1002/pro.3448. Epub 2018 Aug 10.

Abstract

It remains challenging to accurately discriminate between biological and crystal interfaces. Most existing analyses and algorithms focused on the features derived from a single side of the interface. However, less attention has been paid to the properties of residue pairs across protein interfaces. To address this problem, we defined a novel co-evolutionary feature for homodimers through integrating direct coupling analysis and image processing techniques. The residue pairs across biological homodimeric interfaces were significantly enriched in co-evolving residues compared to those across crystal contacts, resulting in a promising classification accuracy with area under the curves (AUCs) of >0.85. Considering the availability of co-evolutionary feature, we also designed other residue pair based features that were useful for both homodimers and heterodimers. The most informative residue pairs were identified to reflect the interaction preferences across protein interfaces. Regarding the other extant properties, we designed the new descriptors at the interface residue level as well as at the pairwise contact level. Extensive validation showed that these single properties can be used to identify biological interfaces with AUCs ranging from 0.60 to 0.88. By integrating co-evolutionary feature with other residue pair based properties, our final prediction model output excellent performance with AUCs of >0.91 on different datasets. Compared to existing methods, our algorithm not only yielded better or comparable results but also provided complementary information. An easy-to-use web server is freely accessible at http://liulab.hzau.edu.cn/RPAIAnalyst.

摘要

准确区分生物界面和晶体界面仍然具有挑战性。大多数现有的分析和算法都集中在界面某一侧的特征上。然而,对于蛋白质界面上残基对的性质关注较少。为了解决这个问题,我们通过整合直接耦合分析和图像处理技术,为同源二聚体定义了一种新的共进化特征。与晶体接触相比,生物同源二聚体界面上的残基对在共进化残基中显著富集,从而实现了有希望的分类精度,曲线下面积(AUC)>0.85。考虑到共进化特征的可用性,我们还设计了其他基于残基对的特征,这些特征对同源二聚体和异源二聚体都有用。确定了最具信息量的残基对,以反映蛋白质界面之间的相互作用偏好。至于其他现存的性质,我们在界面残基水平和成对接触水平设计了新的描述符。广泛的验证表明,这些单一特性可用于识别具有 AUC 范围为 0.60 至 0.88 的生物界面。通过将共进化特征与其他基于残基对的特性相结合,我们的最终预测模型在不同数据集上的 AUC 均超过 0.91,表现出优异的性能。与现有方法相比,我们的算法不仅产生了更好或相当的结果,而且提供了互补的信息。一个易于使用的网络服务器可在 http://liulab.hzau.edu.cn/RPAIAnalyst 上免费访问。

相似文献

5
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验