Sala Davide, Cerofolini Linda, Fragai Marco, Giachetti Andrea, Luchinat Claudio, Rosato Antonio
Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
Comput Struct Biotechnol J. 2019 Dec 26;18:114-124. doi: 10.1016/j.csbj.2019.12.002. eCollection 2020.
Protein assemblies are involved in many important biological processes. Solid-state NMR (SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms of both effort and time required is the manual identification of unambiguous intermolecular contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the predicted ECs are matched with the automatically generated list of experimental contacts. This approach provides a selection of potential interface residues that is used directly in monomer-monomer docking calculations. We validated the protocol on tetrameric L-asparaginase II and dimeric Sod1.
蛋白质组装体参与许多重要的生物学过程。固态核磁共振(SSNMR)光谱技术适用于对高分子量样品进行结构表征,因此可应用于此类组装体。在所需的工作量和时间方面,一个重大瓶颈是手动识别明确的分子间接触。对于同聚寡聚体复合物来说,这尤其具有挑战性,因为简单的均匀标记可能无效。我们通过利用协同进化分析从核磁共振衍生的模糊接触中提取同聚寡聚体界面信息来应对这一挑战。在去除单体三维结构已经满足的进化偶联(ECs)后,将预测的ECs与自动生成的实验接触列表进行匹配。这种方法提供了一系列潜在的界面残基,可直接用于单体-单体对接计算。我们在四聚体L-天冬酰胺酶II和二聚体Sod1上验证了该方案。