a Department of Biology , CESAM, University of Aveiro , Aveiro , Portugal.
b Biosciences, Bioanalytical Research Labs , University of Salzburg , Salzburg , Austria.
Nanotoxicology. 2018 Sep;12(7):766-780. doi: 10.1080/17435390.2018.1481237. Epub 2018 Jun 22.
The stress metabolome provides a thorough insight into the signals and hence mechanisms of response of organisms. This is an excellent tool to advance the understanding of interactions, especially for substances like nanomaterials (NMs), for which there is an urgent need for alternative methods for hazard assessment. The metabolome of Enchytraeus crypticus was studied for the first time. The case study, CuO NM (and CuCl) covered exposure along a time frame [0-7-14 days (d)] and two reproduction effect concentrations (EC10 and EC50). High-performance liquid chromatography-mass spectrometry based method (HPLC-MS) was used, with reversed phase (RP) separation and mass spectrometric detection in positive and negative modes. Metabolite profiling of Cu materials yielded 155 and 382 metabolite features in positive and negative modes, respectively, showing an expression related with time, material, and ECx. The number of differentially expressed metabolites (DEMs) decreased with exposure time (14 d) for CuO NM, whereas for CuCl EC50 it increased. Overall, almost all DEMs are down-regulated for CuO NM and up-regulated for CuCl (both modes). Early effects were mainly related to amino acids and later to lysophospholipids (down-regulation). Furthermore, the underlying mechanisms of CuO NM toxicity (e.g. neurotransmission, nucleic acids generation, cellular energy, and immune defense) differ from CuCl, where later metabolomic responses are mostly linked to the metabolism of lipids and fewer to amino acids. This study reports a large scale metabolome profiling for E. crypticus and identifies potential markers of Cu materials, which can help to align intelligent testing strategies and safer-by-design materials.
应激代谢组学为生物体的信号及其反应机制提供了全面的深入了解。这是一种很好的工具,可以促进对相互作用的理解,特别是对于纳米材料 (NMs) 等物质,迫切需要替代危险评估方法。首次研究了真涡虫的代谢组学。该案例研究包括 CuO NM(和 CuCl),涵盖了[0-7-14 天 (d)]的暴露时间和两个繁殖效应浓度 (EC10 和 EC50)。使用基于高效液相色谱-质谱法 (HPLC-MS) 的方法,采用反相 (RP) 分离和正、负模式下的质谱检测。Cu 材料的代谢物分析得到了正、负模式下分别为 155 和 382 个代谢物特征,表现出与时间、材料和 ECx 相关的表达。对于 CuO NM,随暴露时间 (14 d) 减少的差异表达代谢物 (DEMs) 数量增加,而对于 CuCl EC50 则增加。总体而言,对于 CuO NM,几乎所有的 DEM 都是下调的,而对于 CuCl(两种模式)则是上调的。早期效应主要与氨基酸有关,而晚期则与溶血磷脂有关(下调)。此外,CuO NM 毒性的潜在机制(例如神经递质传递、核酸生成、细胞能量和免疫防御)与 CuCl 不同,后者的代谢组学反应主要与脂质代谢有关,与氨基酸的关系较少。本研究报告了真涡虫的大规模代谢组学分析,并确定了 Cu 材料的潜在标志物,这有助于对齐智能测试策略和更安全的设计材料。