Department of Ecoscience, Aarhus University, C.F. Mo̷llers Alle 4, DK-8000 Aarhus, Denmark.
Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42862-42872. doi: 10.1021/acsami.4c07153. Epub 2024 Aug 1.
The wide variation of nanomaterial (NM) characters (size, shape, and properties) and the related impacts on living organisms make it virtually impossible to assess their safety; the need for modeling has been urged for long. We here investigate the custom-designed 1-10% Fe-doped CuO NM library. Effects were assessed using the soil ecotoxicology model (Oligochaeta) in the standard 21 days plus its extension (49 days). Results showed that 10%Fe-CuO was the most toxic (21 days reproduction EC50 = 650 mg NM/kg soil) and FeO NM was the least toxic (no effects up to 3200 mg NM/kg soil). All other NMs caused similar effects to (21 days reproduction EC50 ranging from 875 to 1923 mg NM/kg soil, with overlapping confidence intervals). Aiming to identify the key NM characteristics responsible for the toxicity, machine learning (ML) modeling was used to analyze the large data set [9 NMs, 68 descriptors, 6 concentrations, 2 exposure times (21 and 49 days), 2 endpoints (survival and reproduction)]. ML allowed us to separate experimental related parameters (e.g., zeta potential) from particle-specific descriptors (e.g., force vectors) for the best identification of important descriptors. We observed that concentration-dependent descriptors (environmental parameters, e.g., zeta potential) were the most important under standard test duration (21 day) but not for longer exposure (closer representation of real-world conditions). In the longer exposure (49 days), the particle-specific descriptors were more important than the concentration-dependent parameters. The longer-term exposure showed that the steepness of the concentration-response decreased with an increased Fe content in the NMs. Longer-term exposure should be a requirement in the hazard assessment of NMs in addition to the standard in OECD guidelines for chemicals. The progress toward ML analysis is desirable given its need for such large data sets and significant power to link NM descriptors to effects in animals. This is beyond the current univariate and concentration-response modeling analysis.
纳米材料(NM)的特性(尺寸、形状和性质)差异很大,对生物体的相关影响使得评估其安全性几乎成为不可能,因此长期以来一直需要建立模型。我们在这里研究了定制的 1-10% Fe 掺杂的 CuO NM 库。使用土壤生态毒理学模型(寡毛纲)在标准的 21 天加上延长(49 天)进行了评估。结果表明,10%Fe-CuO 是最毒的(21 天繁殖 EC50 = 650 mg NM/kg 土壤),而 FeO NM 是毒性最小的(高达 3200 mg NM/kg 土壤无影响)。所有其他 NM 都引起了类似的影响(21 天繁殖 EC50 范围为 875 至 1923 mg NM/kg 土壤,置信区间重叠)。为了确定导致毒性的关键 NM 特性,我们使用机器学习(ML)建模来分析大型数据集[9 种 NM、68 个描述符、6 个浓度、2 个暴露时间(21 天和 49 天)、2 个终点(存活和繁殖)]。ML 使我们能够将实验相关参数(例如,zeta 电位)与颗粒特定描述符(例如,力向量)分开,以便最好地识别重要描述符。我们观察到,在标准测试时间(21 天)内,浓度依赖性描述符(环境参数,如 zeta 电位)是最重要的,但在更长的暴露时间(更接近真实世界条件的表示)中则不是。在更长的暴露时间(49 天)中,颗粒特定描述符比浓度依赖性参数更为重要。随着 NM 中 Fe 含量的增加,长期暴露显示出浓度-反应曲线的陡峭度降低。除了 OECD 化学品指南中的标准外,纳米材料危害评估还应要求进行长期暴露。鉴于对如此大的数据集的需求以及将 NM 描述符与动物效应联系起来的重要性,向 ML 分析的发展是可取的。这超出了当前的单变量和浓度-反应建模分析。