Suppr超能文献

用于阐明心血管性状潜在基因和基因网络的基因组学方法。

Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.

作者信息

Adriaens M E, Bezzina C R

机构信息

Maastricht Centre for Systems Biology, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, The Netherlands.

Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

出版信息

Biophys Rev. 2018 Aug;10(4):1053-1060. doi: 10.1007/s12551-018-0435-2. Epub 2018 Jun 22.

Abstract

Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.

摘要

全基因组关联研究揭示了自然遗传变异与心血管性状之间的关联。然而,将与心血管性状相关的基因座与候选基因或一组候选基因联系起来,以便在后续的机制研究中进行优先排序,绝非易事。如今,基于下一代测序技术的基因组技术提供了多种机会来剖析遗传心血管性状关联背后的基因调控网络,从而有助于以前所未有的规模识别候选基因。特别是当RNA测序与基因分型相结合以识别调节转录本丰度的基因座(称为表达数量性状基因座,eQTL)或调节转录本剪接的基因座(称为剪接数量性状基因座,sQTL)时,它就成为一种强大的工具。此外,RNA测序技术的等位基因特异性分辨率能够估计等位基因失衡,即一个基因的两个等位基因以不同于预期1:1比例的比例表达的状态。当在一项研究中将多种高通量方法与深度表型分析相结合时,基因型与表型之间关系的全面阐释就会显现出来,这种方法称为系统遗传学。在这篇综述中,我们涵盖了系统遗传学在广泛的心血管领域的关键应用。

相似文献

4
Enhancement of Plant Productivity in the Post-Genomics Era.后基因组时代植物生产力的提高
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
10
Using Gene Expression to Annotate Cardiovascular GWAS Loci.利用基因表达注释心血管全基因组关联研究位点。
Front Cardiovasc Med. 2018 Jun 5;5:59. doi: 10.3389/fcvm.2018.00059. eCollection 2018.

本文引用的文献

2
Ensembl 2018.Ensembl 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. doi: 10.1093/nar/gkx1098.
5
Fifteen Genetic Loci Associated With the Electrocardiographic P Wave.与心电图P波相关的15个基因位点
Circ Cardiovasc Genet. 2017 Aug;10(4). doi: 10.1161/CIRCGENETICS.116.001667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验