Suppr超能文献

计算毒理学中的分子相似性

Molecular Similarity in Computational Toxicology.

作者信息

Floris Matteo, Olla Stefania

机构信息

Department of Biomedical Sciences, University of Sassari, Sassari, Italy.

IRGB - CNR, National Research Council, Institute of Genetics and Biomedical Research, Monserrato, CA, Italy.

出版信息

Methods Mol Biol. 2018;1800:171-179. doi: 10.1007/978-1-4939-7899-1_7.

Abstract

The concept of chemical similarity has many applications in several fields of cheminformatics. One common use of chemical similarity measurements, based on the principle that similar molecules have similar properties, is in the context of the read-across approach, where estimates of a specific endpoint for a chemical are obtained starting from experimental data available from highly similar compounds.This chapter reports an implementation of chemical similarity and the analysis of multiple combinations of binary fingerprints and similarity metrics in the context of the read-across technique.This analysis demonstrates that the classical similarity measurements can be improved with a generalizable model of similarity. The approach presented here has been implemented in two open-source software tools for computational toxicology (CAESAR and VEGA).

摘要

化学相似性的概念在化学信息学的多个领域有许多应用。基于相似分子具有相似性质这一原理,化学相似性测量的一种常见用途是在类推法的背景下,即从高度相似化合物的实验数据出发,获得某种化学物质特定端点的估计值。本章报告了化学相似性的一种实现方式,以及在类推技术背景下对二元指纹和相似性度量的多种组合进行的分析。该分析表明,经典的相似性测量可以通过一种可推广的相似性模型得到改进。这里介绍的方法已在两个用于计算毒理学的开源软件工具(CAESAR和VEGA)中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验