Suppr超能文献

相似文献

1
Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.
Ecotoxicol Environ Saf. 2019 Aug 30;178:178-187. doi: 10.1016/j.ecoenv.2019.04.019. Epub 2019 Apr 17.
2
Supporting read-across using biological data.
ALTEX. 2016;33(2):167-82. doi: 10.14573/altex.1601252. Epub 2016 Feb 11.
3
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
4
Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
PLoS One. 2014 Jun 20;9(6):e99863. doi: 10.1371/journal.pone.0099863. eCollection 2014.
7
Toward Good Read-Across Practice (GRAP) guidance.
ALTEX. 2016;33(2):149-66. doi: 10.14573/altex.1601251. Epub 2016 Feb 11.
8
Making big sense from big data in toxicology by read-across.
ALTEX. 2016;33(2):83-93. doi: 10.14573/altex.1603091.
9
Towards quantitative read across: Prediction of Ames mutagenicity in a large database.
Regul Toxicol Pharmacol. 2019 Nov;108:104434. doi: 10.1016/j.yrtph.2019.104434. Epub 2019 Jul 30.
10
Key read across framework components and biology based improvements.
Mutat Res Genet Toxicol Environ Mutagen. 2020 May;853:503172. doi: 10.1016/j.mrgentox.2020.503172. Epub 2020 Mar 16.

引用本文的文献

4
RAID: Regression Analysis-Based Inductive DNA Microarray for Precise Read-Across.
Front Pharmacol. 2022 Jul 22;13:879907. doi: 10.3389/fphar.2022.879907. eCollection 2022.
5
In silico toxicology: From structure-activity relationships towards deep learning and adverse outcome pathways.
Wiley Interdiscip Rev Comput Mol Sci. 2020 Jul-Aug;10(4):e1475. doi: 10.1002/wcms.1475. Epub 2020 Mar 31.
6
Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data.
Environ Sci Technol. 2022 May 3;56(9):5984-5998. doi: 10.1021/acs.est.2c01040. Epub 2022 Apr 22.
8
ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities.
J Chem Inf Model. 2021 Jul 26;61(7):3255-3272. doi: 10.1021/acs.jcim.1c00451. Epub 2021 Jun 21.
9
Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling.
Drug Discov Today. 2020 Sep;25(9):1624-1638. doi: 10.1016/j.drudis.2020.07.005. Epub 2020 Jul 11.

本文引用的文献

1
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
2
Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.
4
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
ACS Omega. 2017 Jun 30;2(6):2805-2812. doi: 10.1021/acsomega.7b00274. Epub 2017 Jun 19.
5
An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.
Sci Total Environ. 2017 Dec 1;599-600:1372-1381. doi: 10.1016/j.scitotenv.2017.05.039. Epub 2017 May 17.
6
CIIPro: a new read-across portal to fill data gaps using public large-scale chemical and biological data.
Bioinformatics. 2017 Feb 1;33(3):464-466. doi: 10.1093/bioinformatics/btw640.
7
Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data.
Front Environ Sci. 2016 Mar;4. doi: 10.3389/fenvs.2016.00012. Epub 2016 Mar 8.
8
Metabolomics as read-across tool: A case study with phenoxy herbicides.
Regul Toxicol Pharmacol. 2016 Nov;81:288-304. doi: 10.1016/j.yrtph.2016.09.013. Epub 2016 Sep 13.
9
Universal Approach for Structural Interpretation of QSAR/QSPR Models.
Mol Inform. 2013 Oct;32(9-10):843-53. doi: 10.1002/minf.201300029. Epub 2013 Sep 16.
10
QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction.
Mol Inform. 2011 Mar 14;30(2-3):241-50. doi: 10.1002/minf.201000151. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验