College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
Ecotoxicol Environ Saf. 2019 Aug 30;178:178-187. doi: 10.1016/j.ecoenv.2019.04.019. Epub 2019 Apr 17.
Read-across has become a primary approach to fill data gaps for chemical safety assessments. Chemical similarity based on structure, reactivity, and physic-chemical property information is a traditional approach applied for read-across toxicity studies. However, toxicity mechanisms are usually complicated in a biological system, so only using chemical similarity to perform the read-across for new compounds was not satisfactory for most toxicity endpoints, especially when the chemically similar compounds show dissimilar toxicities. This study aims to develop an enhanced read-across method for chemical toxicity predictions. To this end, we used two large toxicity datasets for read-across purposes. One consists of 3979 compounds with Ames mutagenicity data, and the other contains 7332 compounds with rat acute oral toxicity data. First, biological data for all compounds in these two datasets were obtained by querying thousands of PubChem bioassays. The PubChem bioassays with at least five compounds from either of these two datasets showing active responses were selected to generate comprehensive bioprofiles. The read-across studies were performed by using chemical similarity search only and also by using a hybrid similarity search based on both chemical descriptors and bioprofiles. Compared to traditional read-across based on chemical similarity, the hybrid read-across approach showed improved accuracy of predictions for both Ames mutagenicity and acute oral toxicity. Furthermore, we could illustrate potential toxicity mechanisms by analyzing the bioprofiles used for this hybrid read-across study. The results of this study indicate that the new hybrid read-across approach could be an applicable computational tool for chemical toxicity predictions. In this way, the bottleneck of traditional read-across studies can be overcome by introducing public biological data into the traditional process. The incorporation of bioprofiles generated from the additional biological data for compounds can partially solve the "activity cliff" issue and reveal their potential toxicity mechanisms. This study leads to a promising direction to utilize data-driven approaches for computational toxicology studies in the big data era.
基于读片的方法已经成为填补化学安全性评估数据空白的主要手段。基于结构、反应性和物理化学性质信息的化学相似性是应用于读片毒性研究的传统方法。然而,毒性机制在生物系统中通常很复杂,因此,仅使用化学相似性来进行新化合物的读片对于大多数毒性终点并不令人满意,特别是当化学相似的化合物表现出不同的毒性时。本研究旨在开发一种用于化学毒性预测的增强型读片方法。为此,我们使用了两个大型毒性数据集进行读片。一个数据集包含 3979 种具有 Ames 致突变性数据的化合物,另一个数据集包含 7332 种具有大鼠急性口服毒性数据的化合物。首先,通过查询数千个 PubChem 生物测定法,获得了这两个数据集的所有化合物的生物数据。选择至少有五个来自这两个数据集的化合物具有活性响应的 PubChem 生物测定法来生成综合生物谱。仅通过化学相似性搜索进行读片研究,以及通过基于化学描述符和生物谱的混合相似性搜索进行读片研究。与基于化学相似性的传统读片相比,混合读片方法在预测 Ames 致突变性和急性口服毒性方面的准确性都有所提高。此外,我们还可以通过分析用于此混合读片研究的生物谱来阐明潜在的毒性机制。这项研究的结果表明,新的混合读片方法可以成为一种用于化学毒性预测的应用计算工具。通过将公共生物数据引入传统过程,可以克服传统读片研究的瓶颈。对于化合物的额外生物数据生成的生物谱的合并可以部分解决“活性悬崖”问题,并揭示其潜在的毒性机制。这项研究为在大数据时代利用数据驱动方法进行计算毒理学研究开辟了一个有希望的方向。