Suppr超能文献

基于化学结构和生物数据的混合读片法评估化学毒性

Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.

机构信息

College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.

出版信息

Ecotoxicol Environ Saf. 2019 Aug 30;178:178-187. doi: 10.1016/j.ecoenv.2019.04.019. Epub 2019 Apr 17.

Abstract

Read-across has become a primary approach to fill data gaps for chemical safety assessments. Chemical similarity based on structure, reactivity, and physic-chemical property information is a traditional approach applied for read-across toxicity studies. However, toxicity mechanisms are usually complicated in a biological system, so only using chemical similarity to perform the read-across for new compounds was not satisfactory for most toxicity endpoints, especially when the chemically similar compounds show dissimilar toxicities. This study aims to develop an enhanced read-across method for chemical toxicity predictions. To this end, we used two large toxicity datasets for read-across purposes. One consists of 3979 compounds with Ames mutagenicity data, and the other contains 7332 compounds with rat acute oral toxicity data. First, biological data for all compounds in these two datasets were obtained by querying thousands of PubChem bioassays. The PubChem bioassays with at least five compounds from either of these two datasets showing active responses were selected to generate comprehensive bioprofiles. The read-across studies were performed by using chemical similarity search only and also by using a hybrid similarity search based on both chemical descriptors and bioprofiles. Compared to traditional read-across based on chemical similarity, the hybrid read-across approach showed improved accuracy of predictions for both Ames mutagenicity and acute oral toxicity. Furthermore, we could illustrate potential toxicity mechanisms by analyzing the bioprofiles used for this hybrid read-across study. The results of this study indicate that the new hybrid read-across approach could be an applicable computational tool for chemical toxicity predictions. In this way, the bottleneck of traditional read-across studies can be overcome by introducing public biological data into the traditional process. The incorporation of bioprofiles generated from the additional biological data for compounds can partially solve the "activity cliff" issue and reveal their potential toxicity mechanisms. This study leads to a promising direction to utilize data-driven approaches for computational toxicology studies in the big data era.

摘要

基于读片的方法已经成为填补化学安全性评估数据空白的主要手段。基于结构、反应性和物理化学性质信息的化学相似性是应用于读片毒性研究的传统方法。然而,毒性机制在生物系统中通常很复杂,因此,仅使用化学相似性来进行新化合物的读片对于大多数毒性终点并不令人满意,特别是当化学相似的化合物表现出不同的毒性时。本研究旨在开发一种用于化学毒性预测的增强型读片方法。为此,我们使用了两个大型毒性数据集进行读片。一个数据集包含 3979 种具有 Ames 致突变性数据的化合物,另一个数据集包含 7332 种具有大鼠急性口服毒性数据的化合物。首先,通过查询数千个 PubChem 生物测定法,获得了这两个数据集的所有化合物的生物数据。选择至少有五个来自这两个数据集的化合物具有活性响应的 PubChem 生物测定法来生成综合生物谱。仅通过化学相似性搜索进行读片研究,以及通过基于化学描述符和生物谱的混合相似性搜索进行读片研究。与基于化学相似性的传统读片相比,混合读片方法在预测 Ames 致突变性和急性口服毒性方面的准确性都有所提高。此外,我们还可以通过分析用于此混合读片研究的生物谱来阐明潜在的毒性机制。这项研究的结果表明,新的混合读片方法可以成为一种用于化学毒性预测的应用计算工具。通过将公共生物数据引入传统过程,可以克服传统读片研究的瓶颈。对于化合物的额外生物数据生成的生物谱的合并可以部分解决“活性悬崖”问题,并揭示其潜在的毒性机制。这项研究为在大数据时代利用数据驱动方法进行计算毒理学研究开辟了一个有希望的方向。

相似文献

1
Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.
Ecotoxicol Environ Saf. 2019 Aug 30;178:178-187. doi: 10.1016/j.ecoenv.2019.04.019. Epub 2019 Apr 17.
2
Supporting read-across using biological data.
ALTEX. 2016;33(2):167-82. doi: 10.14573/altex.1601252. Epub 2016 Feb 11.
3
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
4
Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
PLoS One. 2014 Jun 20;9(6):e99863. doi: 10.1371/journal.pone.0099863. eCollection 2014.
7
Toward Good Read-Across Practice (GRAP) guidance.
ALTEX. 2016;33(2):149-66. doi: 10.14573/altex.1601251. Epub 2016 Feb 11.
8
Making big sense from big data in toxicology by read-across.
ALTEX. 2016;33(2):83-93. doi: 10.14573/altex.1603091.
9
Towards quantitative read across: Prediction of Ames mutagenicity in a large database.
Regul Toxicol Pharmacol. 2019 Nov;108:104434. doi: 10.1016/j.yrtph.2019.104434. Epub 2019 Jul 30.
10
Key read across framework components and biology based improvements.
Mutat Res Genet Toxicol Environ Mutagen. 2020 May;853:503172. doi: 10.1016/j.mrgentox.2020.503172. Epub 2020 Mar 16.

引用本文的文献

4
RAID: Regression Analysis-Based Inductive DNA Microarray for Precise Read-Across.
Front Pharmacol. 2022 Jul 22;13:879907. doi: 10.3389/fphar.2022.879907. eCollection 2022.
5
In silico toxicology: From structure-activity relationships towards deep learning and adverse outcome pathways.
Wiley Interdiscip Rev Comput Mol Sci. 2020 Jul-Aug;10(4):e1475. doi: 10.1002/wcms.1475. Epub 2020 Mar 31.
6
Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data.
Environ Sci Technol. 2022 May 3;56(9):5984-5998. doi: 10.1021/acs.est.2c01040. Epub 2022 Apr 22.
8
ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities.
J Chem Inf Model. 2021 Jul 26;61(7):3255-3272. doi: 10.1021/acs.jcim.1c00451. Epub 2021 Jun 21.
9
Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling.
Drug Discov Today. 2020 Sep;25(9):1624-1638. doi: 10.1016/j.drudis.2020.07.005. Epub 2020 Jul 11.

本文引用的文献

1
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
2
Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.
4
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
ACS Omega. 2017 Jun 30;2(6):2805-2812. doi: 10.1021/acsomega.7b00274. Epub 2017 Jun 19.
5
An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.
Sci Total Environ. 2017 Dec 1;599-600:1372-1381. doi: 10.1016/j.scitotenv.2017.05.039. Epub 2017 May 17.
6
CIIPro: a new read-across portal to fill data gaps using public large-scale chemical and biological data.
Bioinformatics. 2017 Feb 1;33(3):464-466. doi: 10.1093/bioinformatics/btw640.
7
Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data.
Front Environ Sci. 2016 Mar;4. doi: 10.3389/fenvs.2016.00012. Epub 2016 Mar 8.
8
Metabolomics as read-across tool: A case study with phenoxy herbicides.
Regul Toxicol Pharmacol. 2016 Nov;81:288-304. doi: 10.1016/j.yrtph.2016.09.013. Epub 2016 Sep 13.
9
Universal Approach for Structural Interpretation of QSAR/QSPR Models.
Mol Inform. 2013 Oct;32(9-10):843-53. doi: 10.1002/minf.201300029. Epub 2013 Sep 16.
10
QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction.
Mol Inform. 2011 Mar 14;30(2-3):241-50. doi: 10.1002/minf.201000151. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验