Suppr超能文献

从第一个视觉突触的反馈中产生的多样化的视网膜功能。

How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse.

机构信息

Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland.

Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland.

出版信息

Neuron. 2018 Jul 11;99(1):117-134.e11. doi: 10.1016/j.neuron.2018.06.001. Epub 2018 Jun 21.

Abstract

Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.

摘要

许多脑区包含具有不同类型的局部中间神经元。一种中间神经元类型如何对特定脑区的输入-输出转换做出贡献?我们通过化学遗传学方法干扰水平细胞来解决这个问题,水平细胞是在第一个视觉突触处提供反馈的中间神经元类型,同时监测数千个神经节细胞(视网膜输出神经元)的光驱动尖峰活动。我们在神经节细胞的反应动态和反应范围中发现了六种可逆的扰动诱导效应。这些效应有增强或抑制作用,发生在不同的反应时期,并且取决于神经节细胞的类型。视网膜电路的计算模型再现了所有的扰动诱导效应,并使我们能够根据不同的神经节细胞类型为水平细胞赋予特定的功能。我们的综合实验和理论工作揭示了一种单一的中间神经元类型如何在脑区的不同输出通道中差异化地塑造动态特性。

相似文献

1
How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse.
Neuron. 2018 Jul 11;99(1):117-134.e11. doi: 10.1016/j.neuron.2018.06.001. Epub 2018 Jun 21.
2
Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina.
J Neurosci. 2021 Feb 17;41(7):1489-1504. doi: 10.1523/JNEUROSCI.0674-20.2020. Epub 2021 Jan 4.
3
Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina.
J Neurosci. 2012 Aug 1;32(31):10713-24. doi: 10.1523/JNEUROSCI.0442-12.2012.
4
Interneuron circuits tune inhibition in retinal bipolar cells.
J Neurophysiol. 2010 Jan;103(1):25-37. doi: 10.1152/jn.00458.2009. Epub 2009 Nov 11.
5
Versatile functional roles of horizontal cells in the retinal circuit.
Sci Rep. 2017 Jul 17;7(1):5540. doi: 10.1038/s41598-017-05543-2.
6
Development and maintenance of vision's first synapse.
Dev Biol. 2021 Aug;476:218-239. doi: 10.1016/j.ydbio.2021.04.001. Epub 2021 Apr 10.
7
Genetic address book for retinal cell types.
Nat Neurosci. 2009 Sep;12(9):1197-204. doi: 10.1038/nn.2370. Epub 2009 Aug 2.
8
Presynaptic Proteins and Their Roles in Visual Processing by the Retina.
Annu Rev Vis Sci. 2024 Sep;10(1):347-375. doi: 10.1146/annurev-vision-101322-111204. Epub 2024 Sep 2.
9
How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse.
J Physiol. 2017 Aug 15;595(16):5495-5506. doi: 10.1113/JP274177. Epub 2017 May 18.
10

引用本文的文献

2
Synchronization of visual perception within the human fovea.
Nat Neurosci. 2025 Jul 16. doi: 10.1038/s41593-025-02011-3.
3
Morphology and connectivity of retinal horizontal cells in two avian species.
Front Cell Neurosci. 2025 Mar 4;19:1558605. doi: 10.3389/fncel.2025.1558605. eCollection 2025.
4
The first interneuron of the mouse visual system is tailored to the natural environment through morphology and electrical coupling.
iScience. 2024 Oct 28;27(12):111276. doi: 10.1016/j.isci.2024.111276. eCollection 2024 Dec 20.
5
Nonlinear receptive fields evoke redundant retinal coding of natural scenes.
Nature. 2025 Jan;637(8045):394-401. doi: 10.1038/s41586-024-08212-3. Epub 2024 Nov 20.
6
Altered Functional Responses of the Retina in B6 Albino Tyrc/c Mice.
Invest Ophthalmol Vis Sci. 2024 Aug 1;65(10):39. doi: 10.1167/iovs.65.10.39.
7
Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells.
Front Cell Neurosci. 2024 Jan 10;17:1337768. doi: 10.3389/fncel.2023.1337768. eCollection 2023.
9
LRIT3 expression in cone photoreceptors restores post-synaptic bipolar cell signalplex assembly and partial function in mice.
iScience. 2023 Mar 24;26(4):106499. doi: 10.1016/j.isci.2023.106499. eCollection 2023 Apr 21.

本文引用的文献

2
Versatile functional roles of horizontal cells in the retinal circuit.
Sci Rep. 2017 Jul 17;7(1):5540. doi: 10.1038/s41598-017-05543-2.
3
How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse.
J Physiol. 2017 Aug 15;595(16):5495-5506. doi: 10.1113/JP274177. Epub 2017 May 18.
4
Inhibition decorrelates visual feature representations in the inner retina.
Nature. 2017 Feb 23;542(7642):439-444. doi: 10.1038/nature21394. Epub 2017 Feb 8.
5
Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.
Nat Biotechnol. 2016 Feb;34(2):204-9. doi: 10.1038/nbt.3440. Epub 2016 Feb 1.
6
The functional diversity of retinal ganglion cells in the mouse.
Nature. 2016 Jan 21;529(7586):345-50. doi: 10.1038/nature16468. Epub 2016 Jan 6.
7
Lateral Inhibition in the Vertebrate Retina: The Case of the Missing Neurotransmitter.
PLoS Biol. 2015 Dec 10;13(12):e1002322. doi: 10.1371/journal.pbio.1002322. eCollection 2015 Dec.
8
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.
Lab Chip. 2015 Jul 7;15(13):2767-80. doi: 10.1039/c5lc00133a. Epub 2015 May 14.
9
Bayes optimal template matching for spike sorting - combining fisher discriminant analysis with optimal filtering.
J Comput Neurosci. 2015 Jun;38(3):439-59. doi: 10.1007/s10827-015-0547-7. Epub 2015 Feb 5.
10
Retinal output changes qualitatively with every change in ambient illuminance.
Nat Neurosci. 2015 Jan;18(1):66-74. doi: 10.1038/nn.3891. Epub 2014 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验