Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland.
Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland.
Neuron. 2018 Jul 11;99(1):117-134.e11. doi: 10.1016/j.neuron.2018.06.001. Epub 2018 Jun 21.
Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.
许多脑区包含具有不同类型的局部中间神经元。一种中间神经元类型如何对特定脑区的输入-输出转换做出贡献?我们通过化学遗传学方法干扰水平细胞来解决这个问题,水平细胞是在第一个视觉突触处提供反馈的中间神经元类型,同时监测数千个神经节细胞(视网膜输出神经元)的光驱动尖峰活动。我们在神经节细胞的反应动态和反应范围中发现了六种可逆的扰动诱导效应。这些效应有增强或抑制作用,发生在不同的反应时期,并且取决于神经节细胞的类型。视网膜电路的计算模型再现了所有的扰动诱导效应,并使我们能够根据不同的神经节细胞类型为水平细胞赋予特定的功能。我们的综合实验和理论工作揭示了一种单一的中间神经元类型如何在脑区的不同输出通道中差异化地塑造动态特性。