CREST, Ensai, Campus de KerLan, Bruz, France.
Université Paris-Sud and INSERM UMR 1181 B2PHI, Villejuif, France.
Ann Epidemiol. 2018 Aug;28(8):563-569.e6. doi: 10.1016/j.annepidem.2018.05.004. Epub 2018 May 22.
Clustering methods may be useful in epidemiology to better characterize exposures and account for their multidimensional aspects. In this context, application of clustering models allowing for highly dependent variables is of particular interest. We aimed to characterize patterns of domestic exposure to cleaning products using a novel clustering model allowing for highly dependent variables.
To identify domestic cleaning patterns in a large population of French women, we used a mixture model of dependency blocks. This novel approach specifically models within-class dependencies, and is an alternative to the latent class model, which assumes conditional independence. Analyses were conducted in 19,398 participants of the E3N study (women aged 61-88 years) who completed a questionnaire regarding household cleaning habits.
Seven classes were identified, which differed with the frequency of cleaning tasks (e.g., dusting/sweeping/hoovering) and use of specific products (e.g., bleach, sprays). The model also grouped the variables into conditionally independent blocks, providing a summary of the main dependencies among the variables.
The mixture model of dependency blocks, a useful alternative to the latent class model, may have broader application in epidemiology, in particular, in the context of exposome research and growing need for data-reduction methods.
聚类方法在流行病学中可能很有用,可以更好地描述暴露情况并考虑其多维方面。在这种情况下,应用允许高度相关变量的聚类模型尤其具有意义。我们旨在使用一种允许高度相关变量的新型聚类模型来描述家庭清洁产品暴露的模式。
为了确定大量法国女性家庭清洁模式,我们使用了依赖块混合模型。这种新方法专门对类内依赖性进行建模,是潜在类别模型的替代方法,后者假设条件独立性。在 E3N 研究(年龄在 61-88 岁的女性)的 19398 名参与者中进行了分析,这些参与者完成了一份关于家庭清洁习惯的问卷。
确定了七个类别,这些类别因清洁任务的频率(例如,除尘/清扫/吸尘)和使用特定产品(例如漂白剂、喷雾剂)而异。该模型还将变量分组为条件独立块,提供了变量之间主要依赖性的摘要。
依赖块混合模型是潜在类别模型的有用替代方法,可能在流行病学中有更广泛的应用,特别是在暴露组学研究和对数据减少方法的日益增长的需求背景下。