Suppr超能文献

实时变形性细胞术的统计学方法:聚类、降维和显著性检验。

Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing.

作者信息

Herbig M, Mietke A, Müller P, Otto O

机构信息

Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.

出版信息

Biomicrofluidics. 2018 Jun 4;12(4):042214. doi: 10.1063/1.5027197. eCollection 2018 Jul.

Abstract

Real-time deformability (RT-DC) is a method for high-throughput mechanical and morphological phenotyping of cells in suspension. While analysis rates exceeding 1000 cells per second allow for a label-free characterization of complex biological samples, e.g., whole blood, data evaluation has so far been limited to a few geometrical and material parameters such as cell size, deformation, and elastic Young's modulus. But as a microscopy-based technology, RT-DC actually generates and yields multidimensional datasets that require automated and unbiased tools to obtain morphological and rheological cell information. Here, we present a statistical framework to shed light on this complex parameter space and to extract quantitative results under various experimental conditions. As model systems, we apply cell lines as well as primary cells and highlight more than 11 parameters that can be obtained from RT-DC data. These parameters are used to identify sub-populations in heterogeneous samples using Gaussian mixture models, to perform a dimensionality reduction using principal component analysis, and to quantify the statistical significance applying linear mixed models to datasets of multiple replicates.

摘要

实时变形性(RT-DC)是一种对悬浮细胞进行高通量机械和形态表型分析的方法。虽然每秒超过1000个细胞的分析速率能够对复杂生物样本(如全血)进行无标记表征,但迄今为止,数据评估仅限于一些几何和材料参数,如细胞大小、变形和弹性杨氏模量。但作为一种基于显微镜的技术,RT-DC实际上生成并产生了多维数据集,这需要自动化且无偏差的工具来获取细胞的形态和流变学信息。在此,我们提出一个统计框架,以阐明这个复杂的参数空间,并在各种实验条件下提取定量结果。作为模型系统,我们应用细胞系以及原代细胞,并突出了可从RT-DC数据中获得的11个以上参数。这些参数用于使用高斯混合模型识别异质样本中的亚群,使用主成分分析进行降维,并对多个重复数据集应用线性混合模型来量化统计显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验