Suppr超能文献

通过血液单细胞形态流变学生物特征分析检测人类疾病状态。

Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.

机构信息

Center of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.

Department of Medicine, University of Cambridge, Cambridge, United Kingdom.

出版信息

Elife. 2018 Jan 13;7:e29213. doi: 10.7554/eLife.29213.

Abstract

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.

摘要

血液可以说是最重要的体液,对其进行分析可以提供关键的健康状况信息。在临床实践中,缩小诊断范围的首要常规方法是进行差异血液计数,确定所有主要血细胞的频率。为了推进初始血液诊断,我们需要一种无偏且快速的血液功能评估方法,以便缩小诊断范围并生成具体的假设。为了满足这一需求,我们引入了连续的、逐个细胞的形态流变学(MORE)分析,无需标记、富集或分离,速度为 1000 个细胞/秒。在一滴血液中,我们可以识别所有主要的血细胞,并在体外和患者样本中对几种疾病条件下的细胞形态变化进行特征描述。这种方法将之前针对特定分离血细胞的机械研究结果提升到了直接在血液中应用的水平,并为传统的血液分析增加了一个功能维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d92e/5790376/3dc1f1bc1df3/elife-29213-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验