文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞广义趋势模型 (scGTM):一种灵活且可解释的基因表达沿细胞拟时间趋势模型。

Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime.

机构信息

Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA.

Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, CA 90095-7246, USA.

出版信息

Bioinformatics. 2022 Aug 10;38(16):3927-3934. doi: 10.1093/bioinformatics/btac423.


DOI:10.1093/bioinformatics/btac423
PMID:35758616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9991897/
Abstract

MOTIVATION: Modeling single-cell gene expression trends along cell pseudotime is a crucial analysis for exploring biological processes. Most existing methods rely on nonparametric regression models for their flexibility; however, nonparametric models often provide trends too complex to interpret. Other existing methods use interpretable but restrictive models. Since model interpretability and flexibility are both indispensable for understanding biological processes, the single-cell field needs a model that improves the interpretability and largely maintains the flexibility of nonparametric regression models. RESULTS: Here, we propose the single-cell generalized trend model (scGTM) for capturing a gene's expression trend, which may be monotone, hill-shaped or valley-shaped, along cell pseudotime. The scGTM has three advantages: (i) it can capture non-monotonic trends that are easy to interpret, (ii) its parameters are biologically interpretable and trend informative, and (iii) it can flexibly accommodate common distributions for modeling gene expression counts. To tackle the complex optimization problems, we use the particle swarm optimization algorithm to find the constrained maximum likelihood estimates for the scGTM parameters. As an application, we analyze several single-cell gene expression datasets using the scGTM and show that scGTM can capture interpretable gene expression trends along cell pseudotime and reveal molecular insights underlying biological processes. AVAILABILITY AND IMPLEMENTATION: The Python package scGTM is open-access and available at https://github.com/ElvisCuiHan/scGTM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:沿着细胞拟时间建模单细胞基因表达趋势是探索生物过程的关键分析。大多数现有的方法依赖于灵活的非参数回归模型;然而,非参数模型通常提供过于复杂而难以解释的趋势。其他现有的方法使用可解释但受限制的模型。由于模型的可解释性和灵活性对于理解生物过程都是不可或缺的,单细胞领域需要一种既能提高可解释性又能在很大程度上保持非参数回归模型灵活性的模型。

结果:在这里,我们提出了单细胞广义趋势模型(scGTM),用于捕获基因在细胞拟时间上的表达趋势,该趋势可能是单调的、山形的或山谷形的。scGTM 有三个优点:(i)它可以捕获易于解释的非单调趋势,(ii)其参数具有生物学可解释性和趋势信息性,(iii)它可以灵活地适应用于建模基因表达计数的常见分布。为了解决复杂的优化问题,我们使用粒子群优化算法来找到 scGTM 参数的约束最大似然估计。作为应用,我们使用 scGTM 分析了几个单细胞基因表达数据集,并表明 scGTM 可以捕获沿着细胞拟时间的可解释基因表达趋势,并揭示生物过程背后的分子见解。

可用性和实现:Python 包 scGTM 是开放访问的,并可在 https://github.com/ElvisCuiHan/scGTM 上获得。

补充信息:补充数据可在《生物信息学》在线获得。

相似文献

[1]
Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime.

Bioinformatics. 2022-8-10

[2]
A descriptive marker gene approach to single-cell pseudotime inference.

Bioinformatics. 2019-1-1

[3]
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data.

Bioinformatics. 2022-6-24

[4]
GrandPrix: scaling up the Bayesian GPLVM for single-cell data.

Bioinformatics. 2019-1-1

[5]
HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington's epigenetic landscape.

Bioinformatics. 2017-7-15

[6]
LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.

Bioinformatics. 2017-3-1

[7]
GPseudoRank: a permutation sampler for single cell orderings.

Bioinformatics. 2019-2-15

[8]
scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation.

Bioinformatics. 2021-11-5

[9]
switchde: inference of switch-like differential expression along single-cell trajectories.

Bioinformatics. 2017-4-15

[10]
PseudoGA: cell pseudotime reconstruction based on genetic algorithm.

Nucleic Acids Res. 2021-8-20

引用本文的文献

[1]
Applications of nature-inspired metaheuristic algorithms for tackling optimization problems across disciplines.

Sci Rep. 2024-4-24

[2]
Interpretable trajectory inference with single-cell Linear Adaptive Negative-binomial Expression (scLANE) testing.

bioRxiv. 2023-12-20

[3]
Optimal Designs for Nonlinear Mixed-effects Models Using Competitive Swarm Optimizer with Mutated Agents.

Res Sq. 2023-10-5

本文引用的文献

[1]
Statistics or biology: the zero-inflation controversy about scRNA-seq data.

Genome Biol. 2022-1-21

[2]
PseudoGA: cell pseudotime reconstruction based on genetic algorithm.

Nucleic Acids Res. 2021-8-20

[3]
PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data.

Genome Biol. 2021-4-29

[4]
Naught all zeros in sequence count data are the same.

Comput Struct Biotechnol J. 2020-9-28

[5]
Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle.

Nat Med. 2020-9-14

[6]
Negative binomial additive model for RNA-Seq data analysis.

BMC Bioinformatics. 2020-5-1

[7]
Trajectory-based differential expression analysis for single-cell sequencing data.

Nat Commun. 2020-3-5

[8]
The single-cell transcriptional landscape of mammalian organogenesis.

Nature. 2019-2-20

[9]
Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments.

BMC Bioinformatics. 2018-10-16

[10]
Impulse model-based differential expression analysis of time course sequencing data.

Nucleic Acids Res. 2018-11-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索