Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
Adv Mater. 2018 Aug;30(32):e1801884. doi: 10.1002/adma.201801884. Epub 2018 Jun 25.
Hydrogels have promising applications in diverse areas, especially wet environments including tissue engineering, wound dressing, biomedical devices, and underwater soft robotics. Despite strong demands in such applications and great progress in irreversible bonding of robust hydrogels to diverse synthetic and biological surfaces, tough hydrogels with fast, strong, and reversible underwater adhesion are still not available. Herein, a strategy to develop hydrogels demonstrating such characteristics by combining macroscale surface engineering and nanoscale dynamic bonds is proposed. Based on this strategy, excellent underwater adhesion performance of tough hydrogels with dynamic ionic and hydrogen bonds, on diverse substrates, including hard glasses, soft hydrogels, and biological tissues is obtained. The proposed strategy can be generalized to develop other soft materials with underwater adhesion.
水凝胶在多个领域具有广阔的应用前景,特别是在湿润环境中,如组织工程、伤口敷料、生物医学器械和水下软体机器人等。尽管在这些应用中存在强烈的需求,并且在将坚固的水凝胶不可逆地粘合到各种合成和生物表面方面取得了很大的进展,但具有快速、强力和可重复水下附着力的坚韧水凝胶仍然难以实现。在此,提出了一种通过结合宏观表面工程和纳米级动态键来开发具有这种特性的水凝胶的策略。基于该策略,在包括硬玻璃、软水凝胶和生物组织在内的各种基底上,获得了具有动态离子键和氢键的坚韧水凝胶的优异水下附着力。所提出的策略可以推广到开发具有水下附着力的其他软材料。