Rohani Neda, Pouyet Emeline, Walton Marc, Cossairt Oliver, Katsaggelos Aggelos K
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA.
Center for Scientific Studies in the Art, Northwestern University, Evanston, IL, USA.
Angew Chem Int Ed Engl. 2018 Aug 20;57(34):10910-10914. doi: 10.1002/anie.201805135. Epub 2018 Jul 23.
Nonlinear unmixing of hyperspectral reflectance data is one of the key problems in quantitative imaging of painted works of art. The approach presented is to interrogate a hyperspectral image cube by first decomposing it into a set of reflectance curves representing pure basis pigments and second to estimate the scattering and absorption coefficients of each pigment in a given pixel to produce estimates of the component fractions. This two-step algorithm uses a deep neural network to qualitatively identify the constituent pigments in any unknown spectrum and, based on the pigment(s) present and Kubelka-Munk theory to estimate the pigment concentration on a per-pixel basis. Using hyperspectral data acquired on a set of mock-up paintings and a well-characterized illuminated folio from the 15th century, the performance of the proposed algorithm is demonstrated for pigment recognition and quantitative estimation of concentration.
高光谱反射率数据的非线性解混是绘画艺术品定量成像中的关键问题之一。所提出的方法是,首先将高光谱图像立方体分解为一组代表纯基础颜料的反射率曲线,然后估计给定像素中每种颜料的散射和吸收系数,以生成成分分数的估计值,从而对高光谱图像立方体进行分析。这种两步算法使用深度神经网络定性识别任何未知光谱中的组成颜料,并根据存在的颜料和库贝尔卡-蒙克理论逐像素估计颜料浓度。利用在一组模拟绘画和一幅15世纪特征明确的照明对开本上获取的高光谱数据,证明了该算法在颜料识别和浓度定量估计方面的性能。