Suppr超能文献

用于光谱分解问题的多分辨率地面高光谱数据集。

Multi-resolution terrestrial hyperspectral dataset for spectral unmixing problems.

作者信息

Manohar Kumar C V S S, Jha Sudhanshu Shekhar, Nidamanuri Rama Rao, Dadhwal Vinay Kumar

机构信息

Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala, India.

National Institute of Advanced Studies, Bengaluru, India.

出版信息

Data Brief. 2022 May 29;43:108331. doi: 10.1016/j.dib.2022.108331. eCollection 2022 Aug.

Abstract

Recent developments in the miniaturization of hyperspectral imaging sensors have given rise to the increased use of hyperspectral imagery as the primary data for evaluating spectral unmixing algorithms in applications such as industrial quality control, agriculture, mineral mapping, military, etc. This article presents an ultra-high-resolution hyperspectral imagery dataset for undertaking benchmark studies on spectral unmixing. A terrestrial hyperspectral imager (THI) is used for imaging the target scene with the camera sensor pointing horizontally towards the target scene. The datasets are acquired at various spatial resolutions ranging from 1 mm to 2 cm. The targeted scene contains several paper-based panels, each size of 2 cm x 2 cm and filled with different colours and proportions, glued to a black background board that maintains a distinguishable distance between one another. In addition to the hyperspectral imagery data acquisitions, reference spectral signatures of the candidate mixture materials are obtained by in-situ hyperspectral reflectance measurements using a spectroradiometer. The hyperspectral image acquisition and the in-situ spectral signatures of the target scene are collected under natural illumination conditions. The proposed datasets are designed for undertaking proof-of-the-concept (PoC) studies in spectral unmixing. The datasets are also valuable for evaluating the performance of different statistical and machine learning algorithms for target detection, classification, and sub-pixel classification algorithms.

摘要

高光谱成像传感器小型化方面的最新进展,使得高光谱图像越来越多地被用作主要数据,用于评估工业质量控制、农业、矿物测绘、军事等应用中的光谱分解算法。本文提出了一个超高分辨率高光谱图像数据集,用于开展光谱分解的基准研究。使用地面高光谱成像仪(THI)对目标场景进行成像,相机传感器水平指向目标场景。数据集以1毫米至2厘米的各种空间分辨率采集。目标场景包含几个纸质面板,每个面板尺寸为2厘米×2厘米,填充有不同颜色和比例的物质,粘贴在黑色背景板上,彼此之间保持可区分的距离。除了采集高光谱图像数据外,还通过使用光谱辐射计进行现场高光谱反射率测量,获取候选混合材料的参考光谱特征。目标场景的高光谱图像采集和现场光谱特征是在自然光照条件下收集的。所提出的数据集旨在用于开展光谱分解的概念验证(PoC)研究。这些数据集对于评估不同统计和机器学习算法在目标检测、分类以及亚像素分类算法方面的性能也很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcb2/9189777/1e33100076aa/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验