Suppr超能文献

非天然黄素蛋白的磁性自由基光化学

Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins.

机构信息

Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom.

Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.

出版信息

J Am Chem Soc. 2018 Jul 18;140(28):8705-8713. doi: 10.1021/jacs.8b03104. Epub 2018 Jul 10.

Abstract

It is a remarkable fact that ∼50 μT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.

摘要

令人惊讶的是,大约 50 微特斯拉的磁场可以改变某些自由基反应的速率和产率,而这种影响可能是候鸟感知地磁场方向的光依赖性能力的基础。在这个化学罗盘的核心,最有可能的感应分子是隐花色素,这是一种含有黄素的蛋白质,它通过分子内的蓝光诱导电子转移,产生对磁场敏感的自由基对。为了更多地了解控制隐花色素磁场敏感性的因素,我们使用了一组从头设计的蛋白质模型,这些模型自组装成四个α螺旋蛋白质,其中包含一个色氨酸残基作为电子供体,距离共价连接的核黄素作为发色团和电子受体分别约为 0.6、1.1 或 1.7nm。我们使用一种专门开发的腔衰荡光谱技术,对这些设计的黄素蛋白模型的光化学进行了表征,以确定负责磁场效应的瞬态自由基的身份和动力学。考虑到与天然蛋白质的巨大结构和动态差异,模型表现出与隐花色素非常相似的磁场效应,这令人惊讶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验