Laboratoire de Toxicologie Professionnelle et Environnementale, Département de Biochimie Toxicologie Pharmacologie (DBTP), Pôle de Biologie, Institut de Biologie et Pathologie, CHU Grenoble Alpes, France; Equipe EPSP, Laboratoire TIMC, UMR CNRS 5525, Faculté de Médecine, Université Grenoble Alpes, France.
Centre de consultations de pathologies professionnelles (CCPP), Département de Médecine et Santé au Travail, CHU Grenoble Alpes, France; Laboratoire de Toxicologie Professionnelle et Environnementale, Département de Biochimie Toxicologie Pharmacologie (DBTP), Pôle de Biologie, Institut de Biologie et Pathologie, CHU Grenoble Alpes, France.
Toxicol Lett. 2018 Dec 1;298:99-105. doi: 10.1016/j.toxlet.2018.06.1211. Epub 2018 Jun 22.
High styrene exposures are still experienced in various occupational settings, requesting regular exposure assessments. The aims of this study were to study occupational exposures in various industrial sectors and to determine factors influencing styrene urinary metabolites levels.
Biomonitoring was conducted in 141 workers from fiberglass-reinforced plastic (FRP) manufacture, thermoplastic polymers production, vehicle repair shops and cured-in-place pipe lining (CIPP). Urinary styrene (StyU) as well as Mandelic (MA) / Phenyglyoxylic Acids (PGA) were quantified at the beginning and at the end of week, and multivariate linear regression models were used.
StyU levels revealed very low, rarely exceeding 3 μg.L. Highest concentrations of MA + PGA were observed in FRP sector, with levels reaching up to 1100 mg.g of creatinine. Factors influencing end-of-week MA + PGA concentrations were levels at the beginning of week, open molding processes, proximity to the emission source, respiratory protection, styrene content in raw materials. Elevated levels were also observed during CIPP process, whereas thermoplastic injection and vehicle repair shop workers exhibited much lower exposures.
Intervention on process (decreasing styrene proportion, using closed molding), protective equipment (local exhaust ventilation, respiratory protection) and individual practices (stringent safety rules) are expected to decrease occupational exposures. Urinary MA + PGA remain the most appropriate biomarkers for occupational biomonitoring.
在各种职业环境中仍会接触到高浓度的苯乙烯,因此需要定期进行暴露评估。本研究旨在研究各个工业领域的职业暴露情况,并确定影响苯乙烯尿代谢物水平的因素。
在玻璃纤维增强塑料(FRP)制造、热塑性聚合物生产、车辆修理店和原位固化管道衬里(CIPP)的 141 名工人中进行生物监测。在工作开始和结束时,定量检测尿中苯乙烯(StyU)以及马尿酸(MA)/苯氧乙酸(PGA)。使用多元线性回归模型。
StyU 水平非常低,很少超过 3μg.L。MA+PGA 的最高浓度出现在 FRP 行业,浓度可达 1100mg.g 肌酐。影响周末 MA+PGA 浓度的因素是本周初的水平、开放式模制工艺、接近排放源、呼吸防护、原材料中的苯乙烯含量。在 CIPP 过程中也观察到了升高的水平,而热塑性注塑和车辆修理店工人的暴露水平则要低得多。
预计通过工艺干预(降低苯乙烯比例、使用闭模)、防护设备(局部排气通风、呼吸防护)和个人实践(严格的安全规定)来降低职业暴露。尿中 MA+PGA 仍然是职业生物监测最适宜的生物标志物。