Suppr超能文献

基于 lp- 和 Ls- 范数距离的鲁棒线性判别分析。

Lp- and Ls-Norm Distance Based Robust Linear Discriminant Analysis.

机构信息

Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, PR China; College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.

Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, PR China.

出版信息

Neural Netw. 2018 Sep;105:393-404. doi: 10.1016/j.neunet.2018.05.020. Epub 2018 Jun 15.

Abstract

Recently, L1-norm distance measure based Linear Discriminant Analysis (LDA) techniques have been shown to be robust against outliers. However, these methods have no guarantee of obtaining a satisfactory-enough performance due to the insufficient robustness of L1-norm measure. To mitigate this problem, inspired by recent works on Lp-norm based learning, this paper proposes a new discriminant method, called Lp- and Ls-Norm Distance Based Robust Linear Discriminant Analysis (FLDA-Lsp). The proposed method achieves robustness by replacing the L2-norm within- and between-class distances in conventional LDA with Lp- and Ls-norm ones. By specifying the values of p and s, many of previous efforts can be naturally expressed by our objective. The requirement of simultaneously maximizing and minimizing a number of Lp- and Ls-norm terms results in a difficulty to the optimization of the formulated objective. As one of the important contributions of this paper, we design an efficient iterative algorithm to address this problem, and also conduct some insightful analysis on the existence of local minimum and the convergence of the proposed algorithm. Theoretical insights of our method are further supported by promising experimental results on several images databases.

摘要

最近,基于 L1 范数距离度量的线性判别分析 (LDA) 技术已被证明对离群值具有鲁棒性。然而,由于 L1 范数度量的不足够鲁棒性,这些方法并不能保证获得足够令人满意的性能。为了解决这个问题,受最近基于 Lp 范数学习的工作启发,本文提出了一种新的判别方法,称为基于 Lp 和 Ls 范数距离的鲁棒线性判别分析 (FLDA-Lsp)。所提出的方法通过用 Lp 和 Ls 范数代替传统 LDA 中的 L2 范数内类和类间距离来实现鲁棒性。通过指定 p 和 s 的值,许多先前的工作可以自然地用我们的目标来表示。指定数量的 Lp 和 Ls 范数项的最大化和最小化的要求导致了对所提出的目标的优化的困难。作为本文的一个重要贡献,我们设计了一种有效的迭代算法来解决这个问题,并对所提出算法的局部最小值存在性和收敛性进行了一些有见地的分析。我们方法的理论见解得到了在几个图像数据库上进行的有前途的实验结果的进一步支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验