Suppr超能文献

基于 lp 范数的群组局部自适应深度多核学习。

Group-based local adaptive deep multiple kernel learning with lp norm.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

PLoS One. 2020 Sep 17;15(9):e0238535. doi: 10.1371/journal.pone.0238535. eCollection 2020.

Abstract

The deep multiple kernel Learning (DMKL) method has attracted wide attention due to its better classification performance than shallow multiple kernel learning. However, the existing DMKL methods are hard to find suitable global model parameters to improve classification accuracy in numerous datasets and do not take into account inter-class correlation and intra-class diversity. In this paper, we present a group-based local adaptive deep multiple kernel learning (GLDMKL) method with lp norm. Our GLDMKL method can divide samples into multiple groups according to the multiple kernel k-means clustering algorithm. The learning process in each well-grouped local space is exactly adaptive deep multiple kernel learning. And our structure is adaptive, so there is no fixed number of layers. The learning model in each group is trained independently, so the number of layers of the learning model maybe different. In each local space, adapting the model by optimizing the SVM model parameter α and the local kernel weight β in turn and changing the proportion of the base kernel of the combined kernel in each layer by the local kernel weight, and the local kernel weight is constrained by the lp norm to avoid the sparsity of basic kernel. The hyperparameters of the kernel are optimized by the grid search method. Experiments on UCI and Caltech 256 datasets demonstrate that the proposed method is more accurate in classification accuracy than other deep multiple kernel learning methods, especially for datasets with relatively complex data.

摘要

深度多重核学习(DMKL)方法由于其比浅层多重核学习更好的分类性能而受到广泛关注。然而,现有的 DMKL 方法难以在众多数据集上找到合适的全局模型参数来提高分类准确性,并且没有考虑类间相关性和类内多样性。在本文中,我们提出了一种基于 lp 范数的基于分组的局部自适应深度多重核学习(GLDMKL)方法。我们的 GLDMKL 方法可以根据多重核 K-均值聚类算法将样本分为多个组。在每个分组良好的局部空间中的学习过程完全是自适应深度多重核学习。并且我们的结构是自适应的,因此没有固定的层数。每组中的学习模型独立训练,因此学习模型的层数可能不同。在每个局部空间中,通过依次优化 SVM 模型参数α和局部核权重β来自适应地调整模型,并通过局部核权重改变组合核中各层的基础核的比例,局部核权重受 lp 范数约束以避免基础核的稀疏性。核的超参数通过网格搜索方法进行优化。在 UCI 和 Caltech 256 数据集上的实验表明,与其他深度多重核学习方法相比,所提出的方法在分类准确性方面更准确,特别是对于数据相对复杂的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验