Suppr超能文献

河流沉积物源解析对混合模型假设的敏感性:贝叶斯模型比较

Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison.

作者信息

Cooper Richard J, Krueger Tobias, Hiscock Kevin M, Rawlins Barry G

机构信息

School of Environmental Sciences, University of East Anglia, Norwich Research Park Norwich, Norfolk, UK.

IRI THESys, Humboldt University Berlin, Germany.

出版信息

Water Resour Res. 2014 Nov;50(11):9031-9047. doi: 10.1002/2014WR016194. Epub 2014 Nov 21.

Abstract

UNLABELLED

Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations.

KEY POINTS

An OFAT sensitivity analysis of sediment fingerprinting mixing models is conductedBayesian models display high sensitivity to error assumptions and structural choicesSource apportionment results differ between Bayesian and frequentist approaches.

摘要

未标注

混合模型已成为越来越常用的工具,用于使用各种贝叶斯和频率论建模方法,将河流泥沙负荷分配到流域内的各种泥沙来源。在本研究中,我们通过一次一因素(OFAT)敏感性分析,展示了不同的模型设置如何在贝叶斯框架中影响最终的源分配估计。我们构建了13个混合模型版本,每个版本具有不同的误差假设和模型结构选择,并将它们应用于英国诺福克郡黑水河流域的沉积物地球化学数据,以确定2012年8月至2013年8月基流条件下,三个来源(耕地表土、道路边缘和地下物质)对悬浮颗粒物(SPM)的贡献。虽然所有13个模型都估计地下物质是SPM的最大贡献者(中位数约为76%),但分配估计的比较显示,对先验变化、协方差项的纳入、时变分布的纳入以及比例表征方法存在不同程度的敏感性。我们还展示了完全贝叶斯设置和经验贝叶斯设置之间,以及贝叶斯优化方法和频率论优化方法之间在分配结果上存在差异。这种OFAT敏感性分析表明,混合模型的结构选择和误差假设会显著影响泥沙源分配结果,本研究中估计的中位数贡献在不同模型版本之间相差高达21%。因此,强烈建议混合模型的使用者在进行泥沙源分配调查之前,仔细考虑并说明其模型结构的选择依据。

关键点

对泥沙指纹混合模型进行了OFAT敏感性分析;贝叶斯模型对误差假设和结构选择表现出高度敏感性;贝叶斯方法和频率论方法的源分配结果不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ff/4650832/d634209249bb/wrcr0050-9031-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验