Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Beta Brain Research Center (BBRC) - Pasqual Maragall Foundation, Barcelona, Spain.
Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
Neurosci Biobehav Rev. 2018 Oct;93:57-70. doi: 10.1016/j.neubiorev.2018.06.013. Epub 2018 Jun 23.
Imaging Genetics (IG) integrates neuroimaging and genomic data from the same individual, deepening our knowledge of the biological mechanisms behind neurodevelopmental domains and neurological disorders. Although the literature on IG has exponentially grown over the past years, the majority of studies have mainly analyzed associations between candidate brain regions and individual genetic variants. However, this strategy is not designed to deal with the complexity of neurobiological mechanisms underlying behavioral and neurodevelopmental domains. Moreover, larger sample sizes and increased multidimensionality of this type of data represents a challenge for standardizing modeling procedures in IG research. This review provides a systematic update of the methods and strategies currently used in IG studies, and serves as an analytical framework for researchers working in this field. To complement the functionalities of the Neuroconductor framework, we also describe existing R packages that implement these methodologies. In addition, we present an overview of how these methodological approaches are applied in integrating neuroimaging and genetic data.
影像遗传学(IG)整合了来自同一个体的神经影像学和基因组数据,加深了我们对神经发育领域和神经疾病背后生物学机制的理解。尽管过去几年中关于 IG 的文献呈指数级增长,但大多数研究主要分析了候选脑区与个体遗传变异之间的关联。然而,这种策略并不是为了应对行为和神经发育领域背后神经生物学机制的复杂性而设计的。此外,此类数据的更大样本量和增加的多维性代表了在 IG 研究中标准化建模程序的挑战。本综述提供了 IG 研究中当前使用的方法和策略的系统更新,并为该领域的研究人员提供了一个分析框架。为了补充 Neuroconductor 框架的功能,我们还描述了实现这些方法的现有 R 包。此外,我们还概述了这些方法如何应用于整合神经影像学和遗传学数据。