Suppr超能文献

基于知识的多元统计方法研究基因-脑-行为/认知关系:影像遗传学广义结构成分分析。

A knowledge-based multivariate statistical method for examining gene-brain-behavioral/cognitive relationships: Imaging genetics generalized structured component analysis.

机构信息

Department of Psychology, McGill University, Montreal, Quebec, Canada.

Institute of Liberal Education, Kongju National University, Gongju, Korea.

出版信息

PLoS One. 2021 Mar 10;16(3):e0247592. doi: 10.1371/journal.pone.0247592. eCollection 2021.

Abstract

With advances in neuroimaging and genetics, imaging genetics is a naturally emerging field that combines genetic and neuroimaging data with behavioral or cognitive outcomes to examine genetic influence on altered brain functions associated with behavioral or cognitive variation. We propose a statistical approach, termed imaging genetics generalized structured component analysis (IG-GSCA), which allows researchers to investigate such gene-brain-behavior/cognitive associations, taking into account well-documented biological characteristics (e.g., genetic pathways, gene-environment interactions, etc.) and methodological complexities (e.g., multicollinearity) in imaging genetic studies. We begin by describing the conceptual and technical underpinnings of IG-GSCA. We then apply the approach for investigating how nine depression-related genes and their interactions with an environmental variable (experience of potentially traumatic events) influence the thickness variations of 53 brain regions, which in turn affect depression severity in a sample of Korean participants. Our analysis shows that a dopamine receptor gene and an interaction between a serotonin transporter gene and the environment variable have statistically significant effects on a few brain regions' variations that have statistically significant negative impacts on depression severity. These relationships are largely supported by previous studies. We also conduct a simulation study to safeguard whether IG-GSCA can recover parameters as expected in a similar situation.

摘要

随着神经影像学和遗传学的进步,影像遗传学是一个自然涌现的领域,它将遗传和神经影像学数据与行为或认知结果相结合,研究遗传对与行为或认知变化相关的大脑功能改变的影响。我们提出了一种统计方法,称为影像遗传学广义结构成分分析(IG-GSCA),该方法允许研究人员在影像遗传学研究中考虑到有充分文献记录的生物学特征(例如遗传途径、基因-环境相互作用等)和方法学复杂性(例如多重共线性),从而研究这种基因-大脑-行为/认知的关联。我们首先描述了 IG-GSCA 的概念和技术基础。然后,我们应用该方法来研究 9 个与抑郁相关的基因及其与环境变量(经历潜在创伤性事件)的相互作用如何影响 53 个脑区的厚度变化,进而影响韩国参与者样本中的抑郁严重程度。我们的分析表明,多巴胺受体基因和 5-羟色胺转运体基因与环境变量之间的相互作用对几个脑区的变化有统计学意义的影响,这些变化对抑郁严重程度有统计学意义的负面影响。这些关系在很大程度上得到了先前研究的支持。我们还进行了一项模拟研究,以确保 IG-GSCA 能否在类似情况下如预期那样恢复参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cb/7946325/e721ab238cc9/pone.0247592.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验