School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
Adv Mater. 2018 Aug;30(32):e1801951. doi: 10.1002/adma.201801951. Epub 2018 Jun 26.
The exploration of novel molecular architectures is crucial for the design of high-performance ambipolar polymer semiconductors. Here, a "triple-acceptors architecture" strategy to design the ambipolar polymer DPP-2T-DPP-TBT is introduced. The utilization of this architecture enables DPP-2T-DPP-TBT to achieve deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of -5.38/-4.19 eV, and strong intermolecular interactions, which are favorable for hole/electron injection and intermolecular hopping through π-stacking. All these factors result in excellent ambipolar transport characteristics and promising applications in complementary-like circuits for DPP-2T-DPP-TBT under ambient conditions with high hole/electron mobilities and a gain value of up to 3.01/3.84 cm V s and 171, respectively, which are among the best performances in ambipolar polymer organic thin-film transistors and associated complementary-like circuits, especially in top-gate device configuration with low-cost glass as substrates. These results demonstrate that the "triple-acceptors architecture" strategy is an effective way for designing high-performance ambipolar polymer semiconductors.
探索新颖的分子架构对于设计高性能双极性聚合物半导体至关重要。在这里,我们引入了一种“三重受体架构”策略来设计双极性聚合物 DPP-2T-DPP-TBT。这种架构的应用使 DPP-2T-DPP-TBT 具有深的最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)能级(分别为-5.38/-4.19 eV)和强的分子间相互作用,有利于空穴/电子注入和通过π-堆积进行分子间跃迁。所有这些因素共同导致了 DPP-2T-DPP-TBT 具有出色的双极性输运特性,并有望在环境条件下应用于互补型电路中,其空穴/电子迁移率高达 3.01/3.84 cm V s,增益值高达 171,这是双极性聚合物有机薄膜晶体管及相关互补型电路中最好的性能之一,特别是在以低成本玻璃为衬底的顶栅器件结构中。这些结果表明,“三重受体架构”策略是设计高性能双极性聚合物半导体的有效方法。