NaMLab gGmbH, Noethnitzer Str. 64, 01187 Dresden, Germany.
Nanoscale. 2018 Nov 29;10(46):21755-21763. doi: 10.1039/c8nr07135g.
Neuron is the basic computing unit in brain-inspired neural networks. Although a multitude of excellent artificial neurons realized with conventional transistors have been proposed, they might not be energy and area efficient in large-scale networks. The recent discovery of ferroelectricity in hafnium oxide (HfO2) and the related switching phenomena at the nanoscale might provide a solution. This study employs the newly reported accumulative polarization reversal in nanoscale HfO2-based ferroelectric field-effect transistors (FeFETs) to implement two key neuronal dynamics: the integration of action potentials and the subsequent firing according to the biologically plausible all-or-nothing law. We show that by carefully shaping electrical excitations based on the particular nucleation-limited switching kinetics of the ferroelectric layer further neuronal behaviors can be emulated, such as firing activity tuning, arbitrary refractory period and the leaky effect. Finally, we discuss the advantages of an FeFET-based neuron, highlighting its transferability to advanced scaling technologies and the beneficial impact it may have in reducing the complexity of neuromorphic circuits.
神经元是受大脑启发的神经网络中的基本计算单元。尽管已经提出了许多使用传统晶体管实现的优秀人工神经元,但在大规模网络中它们可能在能量和面积效率方面存在不足。最近在氧化铪(HfO2)中发现的铁电性以及相关的纳米尺度开关现象可能提供了一种解决方案。本研究利用新报道的纳米级 HfO2 基铁电场效应晶体管(FeFET)中的累积极化反转,实现了两个关键的神经元动力学:动作电位的整合以及根据生物上合理的全有或全无律进行后续的触发。我们表明,通过根据铁电层的特定成核限制开关动力学仔细塑造电激励,可以模拟进一步的神经元行为,例如触发活动调节、任意的不应期和漏电流效应。最后,我们讨论了基于 FeFET 的神经元的优势,强调了它向先进缩放技术的可转移性以及它在降低神经形态电路复杂性方面可能产生的有益影响。