Suppr超能文献

通过与微图案化棘轮的排列相互作用实现微马达的定向流动。

Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets.

作者信息

Katuri Jaideep, Caballero David, Voituriez Raphael, Samitier Josep, Sanchez Samuel

机构信息

Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona , Spain.

Max-Planck Institute for Intelligent Systems , Heisenbergstr. 3 , D-70569 Stuttgart , Germany.

出版信息

ACS Nano. 2018 Jul 24;12(7):7282-7291. doi: 10.1021/acsnano.8b03494. Epub 2018 Jul 2.

Abstract

To achieve control over naturally diffusive, out-of-equilibrium systems composed of self-propelled particles, such as cells or self-phoretic colloids, is a long-standing challenge in active matter physics. The inherently random motion of these active particles can be rectified in the presence of local and periodic asymmetric cues given that a nontrivial interaction exists between the self-propelled particle and the cues. Here, we exploit the phoretic and hydrodynamic interactions of synthetic micromotors with local topographical features to break the time-reversal symmetry of particle trajectories and to direct a macroscopic flow of micromotors. We show that the orientational alignment induced on the micromotors by the topographical features, together with their geometrical asymmetry, is crucial in generating directional particle flow. We also show that our system can be used to concentrate micromotors in confined spaces and identify the interactions leading to this effect. Finally, we develop a minimal model, which identifies the key parameters of the system responsible for the observed rectification. Overall, our system allows for robust control over both temporal and spatial distribution of synthetic micromotors.

摘要

在活性物质物理学中,要实现对由自驱动粒子(如细胞或自泳胶体)组成的自然扩散、非平衡系统的控制,是一个长期存在的挑战。鉴于自驱动粒子与这些线索之间存在非平凡相互作用,在存在局部和周期性不对称线索的情况下,这些活性粒子固有的随机运动可以得到纠正。在这里,我们利用合成微马达与局部地形特征之间的泳动和流体动力学相互作用,来打破粒子轨迹的时间反演对称性,并引导微马达的宏观流动。我们表明,地形特征在微马达上诱导的取向排列,连同它们的几何不对称性,对于产生定向粒子流至关重要。我们还表明,我们的系统可用于在受限空间中浓缩微马达,并识别导致这种效应的相互作用。最后,我们开发了一个最小模型,该模型确定了导致观察到的整流现象的系统关键参数。总体而言,我们的系统能够对合成微马达的时间和空间分布进行稳健控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验