Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Via la Masa 19 , 20156 Milano , Italy.
Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO) , Institut National de l'Environnement Industriel et des Risques (INERIS) , 60550 Verneuil en Halatte , France.
J Chem Inf Model. 2018 Aug 27;58(8):1501-1517. doi: 10.1021/acs.jcim.8b00297. Epub 2018 Jul 26.
Nonalcoholic hepatic steatosis is a worldwide epidemiological concern since it is among the most prominent hepatic diseases. Indeed, research in toxicology and epidemiology has gathered evidence that exposure to endocrine disruptors can perturb cellular homeostasis and cause this disease. Therefore, assessing the likelihood of a chemical to trigger hepatic steatosis is a matter of the utmost importance. However, systematic in vivo testing of all the chemicals humans are exposed to is not feasible for ethical and economical reasons. In this context, predicting the molecular initiating events (MIE) leading to hepatic steatosis by QSAR modeling is an issue of practical relevance in modern toxicology. In this article, we present QSAR models based on random forest classifiers and DRAGON molecular descriptors for the prediction of in vitro assays that are relevant to MIEs leading to hepatic steatosis. These assays were provided by the ToxCast program and proved to be predictive for the detection of chemical-induced steatosis. During the modeling process, special attention was paid to chemical and toxicological data curation. We adopted two modeling strategies (undersampling and balanced random forests) to develop robust QSAR models from unbalanced data sets. The two modeling approaches gave similar results in terms of predictivity, and most of the models satisfy a minimum percentage of correctly predicted chemicals equal to 75%. Finally, and most importantly, the developed models proved to be useful as an effective in silico screening test for hepatic steatosis.
非酒精性肝脂肪变性是一个全球性的流行病学问题,因为它是最突出的肝脏疾病之一。事实上,毒理学和流行病学的研究已经积累了证据,表明暴露于内分泌干扰物会破坏细胞内稳态并导致这种疾病。因此,评估一种化学物质引发肝脂肪变性的可能性是至关重要的。然而,出于伦理和经济原因,对人类接触的所有化学物质进行系统的体内测试是不可行的。在这种情况下,通过定量构效关系(QSAR)建模预测导致肝脂肪变性的分子起始事件(MIE)是现代毒理学中的一个实际问题。在本文中,我们提出了基于随机森林分类器和 DRAGON 分子描述符的 QSAR 模型,用于预测与导致肝脂肪变性的 MIE 相关的体外试验。这些试验由 ToxCast 计划提供,被证明可用于检测化学诱导的脂肪变性。在建模过程中,特别注意化学和毒理学数据的整理。我们采用了两种建模策略(欠采样和平衡随机森林),从不平衡的数据集开发了稳健的 QSAR 模型。这两种建模方法在预测性能方面给出了相似的结果,并且大多数模型满足正确预测化学物质的最小百分比等于 75%。最后,也是最重要的,所开发的模型被证明是有用的,可作为一种有效的肝脂肪变性的计算机筛选试验。