Suppr超能文献

基于计算机模拟的预测药物和草药肝损伤新替代方法的研究进展。

In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review.

机构信息

Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea.

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA.

出版信息

Food Chem Toxicol. 2023 Sep;179:113948. doi: 10.1016/j.fct.2023.113948. Epub 2023 Jul 17.

Abstract

New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these models being mainly developed using datasets generated from drug-like molecules, they were also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has achieved great success in many different fields, advanced machine learning algorithms have been actively applied to improve the accuracy of in silico models. Additionally, the development of liver AOPs, combined with big data in toxicology, has been valuable in developing in silico models with enhanced predictive performance and interpretability. Specifically, one approach involves developing structure-based models for predicting molecular initiating events of liver AOPs, while others use in vitro data with structure information as model inputs for making predictions. Even though liver injury remains a difficult endpoint to predict, advancements in machine learning algorithms and the expansion of in vitro databases with relevant biological knowledge have made a huge impact on improving in silico modeling for drug-induced liver injury prediction.

摘要

新方法(NAMs)已经被开发出来,通过创新技术来预测广泛的毒性。肝损伤是研究最广泛的终点之一,因为它的严重性和频率,在使用药物或膳食补充剂的人群中发生。在这篇综述中,我们专注于使用深度学习和基于不良结局途径(AOPs)的体外数据进行肝损伤预测的计算模型的最新进展。尽管这些模型主要是使用来自类药分子的数据集开发的,但它们也被应用于预测草药产品引起的肝毒性。由于深度学习在许多不同领域取得了巨大成功,先进的机器学习算法已被积极应用于提高计算模型的准确性。此外,肝 AOPs 的发展与毒理学中的大数据相结合,在开发具有增强预测性能和可解释性的计算模型方面具有重要价值。具体来说,一种方法涉及开发用于预测肝 AOP 分子起始事件的基于结构的模型,而另一种方法则使用具有结构信息的体外数据作为模型输入进行预测。尽管肝损伤仍然是一个难以预测的终点,但机器学习算法的进步和具有相关生物学知识的体外数据库的扩展,对改进药物诱导肝损伤预测的计算模型产生了巨大影响。

相似文献

1
In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review.
Food Chem Toxicol. 2023 Sep;179:113948. doi: 10.1016/j.fct.2023.113948. Epub 2023 Jul 17.
2
Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies.
Chem Res Toxicol. 2018 Jun 18;31(6):412-430. doi: 10.1021/acs.chemrestox.8b00054. Epub 2018 May 10.
3
Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
Mol Pharm. 2020 Jul 6;17(7):2628-2637. doi: 10.1021/acs.molpharmaceut.0c00326. Epub 2020 Jun 8.
4
Chemistry-Based Modeling on Phenotype-Based Drug-Induced Liver Injury Annotation: From Public to Proprietary Data.
Chem Res Toxicol. 2023 Aug 21;36(8):1238-1247. doi: 10.1021/acs.chemrestox.2c00378. Epub 2023 Aug 9.
6
Toxicity prediction using target, interactome, and pathway profiles as descriptors.
Toxicol Lett. 2023 May 15;381:20-26. doi: 10.1016/j.toxlet.2023.04.005. Epub 2023 Apr 13.
7
Mapping physiology: A systems biology approach for the development of alternative methods in toxicology.
ALTEX. 2025;42(2):301-307. doi: 10.14573/altex.2412241. Epub 2025 Jan 20.
8
In Silico Models for Hepatotoxicity.
Methods Mol Biol. 2022;2425:355-392. doi: 10.1007/978-1-0716-1960-5_14.
10
In-silico approach for drug induced liver injury prediction: Recent advances.
Toxicol Lett. 2018 Oct 1;295:288-295. doi: 10.1016/j.toxlet.2018.06.1216. Epub 2018 Jul 5.

引用本文的文献

2
Explainable Artificial Intelligence in the Field of Drug Research.
Drug Des Devel Ther. 2025 May 29;19:4501-4516. doi: 10.2147/DDDT.S525171. eCollection 2025.
3
Mechanisms of drug induced liver injury.
Cell Mol Life Sci. 2025 May 26;82(1):213. doi: 10.1007/s00018-025-05744-3.
5
Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research.
Int J Mol Sci. 2025 Mar 14;26(6):2624. doi: 10.3390/ijms26062624.
6
Computational models for predicting liver toxicity in the deep learning era.
Front Toxicol. 2024 Jan 19;5:1340860. doi: 10.3389/ftox.2023.1340860. eCollection 2023.

本文引用的文献

1
Applications of In Silico Models to Predict Drug-Induced Liver Injury.
Toxics. 2022 Dec 14;10(12):788. doi: 10.3390/toxics10120788.
2
Genetics of drug-induced liver injury: Current knowledge and future prospects.
Clin Transl Sci. 2023 Jan;16(1):37-42. doi: 10.1111/cts.13424. Epub 2022 Oct 4.
3
Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data.
Toxicol Appl Pharmacol. 2022 Nov 1;454:116250. doi: 10.1016/j.taap.2022.116250. Epub 2022 Sep 20.
5
A framework for establishing scientific confidence in new approach methodologies.
Arch Toxicol. 2022 Nov;96(11):2865-2879. doi: 10.1007/s00204-022-03365-4. Epub 2022 Aug 20.
6
ToxSTAR: drug-induced liver injury prediction tool for the web environment.
Bioinformatics. 2022 Sep 15;38(18):4426-4427. doi: 10.1093/bioinformatics/btac490.
7
Semi-automated approach for generation of biological networks on drug-induced cholestasis, steatosis, hepatitis, and cirrhosis.
Toxicol Res. 2022 Mar 3;38(3):393-407. doi: 10.1007/s43188-022-00124-6. eCollection 2022 Jul.
8
Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay.
J Hazard Mater. 2022 Aug 15;436:129193. doi: 10.1016/j.jhazmat.2022.129193. Epub 2022 May 20.
9
The development and application of models for drug induced liver injury.
RSC Adv. 2018 Feb 20;8(15):8101-8111. doi: 10.1039/c7ra12957b. eCollection 2018 Feb 19.
10
Herb-Induced Liver Injury-A Challenging Diagnosis.
Healthcare (Basel). 2022 Jan 31;10(2):278. doi: 10.3390/healthcare10020278.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验