Division of Pediatric Endocrinology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232.
Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and.
J Immunol. 2018 Aug 1;201(3):861-873. doi: 10.4049/jimmunol.1701717. Epub 2018 Jun 27.
Early breaches in B cell tolerance are central to type 1 diabetes progression in mouse and man. Conventional BCR transgenic mouse models (VH125.Tg NOD) reveal the power of B cell specificity to drive disease as APCs. However, in conventional fixed IgM models, comprehensive assessment of B cell development is limited. To provide more accurate insight into the developmental and functional fates of anti-insulin B cells, we generated a new NOD model (V125NOD) in which anti-insulin VDJH125 is targeted to the IgH chain locus to generate a small (1-2%) population of class switch-competent insulin-binding B cells. Tracking of this rare population in a polyclonal repertoire reveals that anti-insulin B cells are preferentially skewed into marginal zone and late transitional subsets known to have increased sensitivity to proinflammatory signals. Additionally, IL-10 production, characteristic of regulatory B cell subsets, is increased. In contrast to conventional models, class switch-competent anti-insulin B cells proliferate normally in response to mitogenic stimuli but remain functionally silent for insulin autoantibody production. Diabetes development is accelerated, which demonstrates the power of anti-insulin B cells to exacerbate disease without differentiation into Ab-forming or plasma cells. Autoreactive T cell responses in V125NOD mice are not restricted to insulin autoantigens, as evidenced by increased IFN-γ production to a broad array of diabetes-associated epitopes. Together, these results independently validate the pathogenic role of anti-insulin B cells in type 1 diabetes, underscore their diverse developmental fates, and demonstrate the pathologic potential of coupling a critical β cell specificity to predominantly proinflammatory Ag-presenting B cell subsets.
早期 B 细胞耐受的破坏是导致 1 型糖尿病在小鼠和人类中进展的核心。传统的 BCR 转基因小鼠模型(VH125.Tg NOD)揭示了 B 细胞特异性作为 APC 驱动疾病的强大能力。然而,在传统的固定 IgM 模型中,对 B 细胞发育的全面评估受到限制。为了更准确地了解抗胰岛素 B 细胞的发育和功能命运,我们在 NOD 模型中生成了一种新的模型(V125NOD),其中抗胰岛素 VDJH125 被靶向到 IgH 链基因座,以产生一小部分(1-2%)具有类别转换能力的胰岛素结合 B 细胞。在多克隆 repertoire 中追踪这个稀有群体表明,抗胰岛素 B 细胞优先偏向于边缘区和晚期过渡亚群,这些亚群已知对促炎信号具有更高的敏感性。此外,IL-10 的产生增加,这是调节性 B 细胞亚群的特征。与传统模型相反,具有类别转换能力的抗胰岛素 B 细胞在对有丝分裂刺激的反应中正常增殖,但在胰岛素自身抗体产生方面仍然保持功能沉默。糖尿病的发展加速,这证明了抗胰岛素 B 细胞在没有分化为 Ab 形成或浆细胞的情况下加剧疾病的能力。V125NOD 小鼠中的自身反应性 T 细胞反应不仅局限于胰岛素自身抗原,这一点可以通过增加对广泛的糖尿病相关表位的 IFN-γ 产生来证明。总之,这些结果独立地验证了抗胰岛素 B 细胞在 1 型糖尿病中的致病作用,强调了它们多样化的发育命运,并证明了将关键的β细胞特异性与主要的促炎 Ag 呈递 B 细胞亚群结合的病理潜力。