Department for Agrobiotechnology, Biotechnology in Animal Production, IFA Tulln, 3430, Tulln, Austria.
Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
Nat Commun. 2018 Jun 27;9(1):2488. doi: 10.1038/s41467-018-04797-2.
Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models. We provide a novel and detailed quantitative characterisation of the linear increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups. We find that differences in mean heteroplasmy are induced between generations, and the heteroplasmy of germline and somatic precursors diverge early in development, with a haplotype-specific direction of segregation. We develop stochastic theory predicting the implications of these dynamics for ageing and disease manifestation and discuss its application to human mtDNA dynamics.
细胞中存在重要的线粒体 DNA(mtDNA)群体,可能由 mtDNA 类型的异质混合物组成。这些异质群体通过发育、衰老和世代的进化是遗传疾病的核心,但在哺乳动物中理解甚少。在这里,我们使用一个前所未有的规模和时间跨度的数据集来剖析这些群体动态,该数据集包括两个遗传上不同的小鼠模型在一生中以及世代中 1947 个单细胞卵母细胞和 899 个体细胞异质变化的测量结果。我们对卵母细胞和幼仔中线粒体 DNA 异质性方差在整个哺乳动物生命过程中的线性增加进行了新颖而详细的定量描述。我们发现,世代之间存在平均异质性的差异,生殖系和体细胞前体的异质性在发育早期就开始分化,具有特定单倍型的分离方向。我们提出了一个随机理论,预测这些动态对衰老和疾病表现的影响,并讨论了其在人类 mtDNA 动态中的应用。