Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nature. 2023 Aug;620(7975):839-848. doi: 10.1038/s41586-023-06426-5. Epub 2023 Aug 16.
Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.
线粒体 DNA(mtDNA)是一种母系遗传的、高拷贝数的基因组,对于氧化磷酸化是必需的。异质性是指个体中存在混合的 mtDNA 等位基因,与疾病和衰老有关。人类异质性常见变异的潜在机制,以及核基因组对此变异的影响,仍未得到充分探索。在这里,我们使用来自 274832 个人的血液衍生全基因组序列来定量 mtDNA 拷贝数(mtCN)和异质性,并进行全基因组关联研究以识别相关的核基因座。在进行血细胞成分校正后,我们发现 mtCN 随年龄呈线性下降,与 92 个核基因座的变异有关。我们观察到,几乎每个人都携带有异质性 mtDNA 变异,这些变异符合以下两个原则:(1)异质性单核苷酸变异倾向于体细胞发生,并在 70 岁以后急剧积累,而(2)异质性插入/缺失是母系遗传的,作为混合物存在,其相对水平与涉及 mtDNA 复制、维持和新途径的 42 个核基因座相关。这些基因座可能通过赋予某些 mtDNA 等位基因复制优势来发挥作用。作为一个说明性的例子,我们在 chrM:302 位置上发现了一个长度变异,该变异存在于超过 50%的人类中,该位置位于一个之前被提议介导 mtDNA 转录/复制切换的 G-四联体中。我们发现,该变异对 mtDNA 丰度具有顺式遗传控制作用,并且本身与核基因座相关,这些核基因座编码该调控开关的机制。我们的研究表明,核基因组中的常见变异可以塑造人类群体中 mtCN 和异质性动态的变异。