Suppr超能文献

迈向计算机辅助 TTTS:从胎儿镜视频中进行激光消融检测以实现工作流程分割。

Towards computer-assisted TTTS: Laser ablation detection for workflow segmentation from fetoscopic video.

机构信息

Wellcome / EPSRC Centre for Interventional and Surgical Sciences Centre For Medical Image Computing, University College London, London, UK.

Department of Obstetrics and Gynecology, University Hospitals Leuven, Louvain, Belgium.

出版信息

Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1661-1670. doi: 10.1007/s11548-018-1813-8. Epub 2018 Jun 27.

Abstract

PURPOSE

Intrauterine foetal surgery is the treatment option for several congenital malformations. For twin-to-twin transfusion syndrome (TTTS), interventions involve the use of laser fibre to ablate vessels in a shared placenta. The procedure presents a number of challenges for the surgeon, and computer-assisted technologies can potentially be a significant support. Vision-based sensing is the primary source of information from the intrauterine environment, and hence, vision approaches present an appealing approach for extracting higher level information from the surgical site.

METHODS

In this paper, we propose a framework to detect one of the key steps during TTTS interventions-ablation. We adopt a deep learning approach, specifically the ResNet101 architecture, for classification of different surgical actions performed during laser ablation therapy.

RESULTS

We perform a two-fold cross-validation using almost 50 k frames from five different TTTS ablation procedures. Our results show that deep learning methods are a promising approach for ablation detection.

CONCLUSION

To our knowledge, this is the first attempt at automating photocoagulation detection using video and our technique can be an important component of a larger assistive framework for enhanced foetal therapies. The current implementation does not include semantic segmentation or localisation of the ablation site, and this would be a natural extension in future work.

摘要

目的

宫内胎儿手术是治疗几种先天性畸形的选择。对于双胎输血综合征(TTTS),干预措施包括使用激光光纤消融共享胎盘中的血管。该手术对外科医生提出了许多挑战,计算机辅助技术可能是一个重要的支持手段。基于视觉的感测是来自宫内环境的主要信息源,因此,视觉方法为从手术部位提取更高层次的信息提供了一种有吸引力的方法。

方法

在本文中,我们提出了一个框架来检测 TTTS 干预措施中的关键步骤之一——消融。我们采用深度学习方法,特别是 ResNet101 架构,对激光消融治疗过程中执行的不同手术动作进行分类。

结果

我们使用来自五个不同 TTTS 消融过程的近 50k 个帧进行了两次交叉验证。我们的结果表明,深度学习方法是消融检测的一种有前途的方法。

结论

据我们所知,这是首次尝试使用视频自动检测光凝,我们的技术可以成为增强胎儿治疗的更大辅助框架的重要组成部分。当前的实现不包括消融部位的语义分割或定位,这将是未来工作的自然延伸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/6153674/d933aefd6da8/11548_2018_1813_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验