Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) and Department of Computer Science, University College London, London, UK.
Department of Mechanical Engineering, KU Leuven University, Leuven, Belgium.
Int J Comput Assist Radiol Surg. 2020 May;15(5):791-801. doi: 10.1007/s11548-020-02169-0. Epub 2020 Apr 29.
Fetoscopic laser photocoagulation is a minimally invasive surgery for the treatment of twin-to-twin transfusion syndrome (TTTS). By using a lens/fibre-optic scope, inserted into the amniotic cavity, the abnormal placental vascular anastomoses are identified and ablated to regulate blood flow to both fetuses. Limited field-of-view, occlusions due to fetus presence and low visibility make it difficult to identify all vascular anastomoses. Automatic computer-assisted techniques may provide better understanding of the anatomical structure during surgery for risk-free laser photocoagulation and may facilitate in improving mosaics from fetoscopic videos.
We propose FetNet, a combined convolutional neural network (CNN) and long short-term memory (LSTM) recurrent neural network architecture for the spatio-temporal identification of fetoscopic events. We adapt an existing CNN architecture for spatial feature extraction and integrated it with the LSTM network for end-to-end spatio-temporal inference. We introduce differential learning rates during the model training to effectively utilising the pre-trained CNN weights. This may support computer-assisted interventions (CAI) during fetoscopic laser photocoagulation.
We perform quantitative evaluation of our method using 7 in vivo fetoscopic videos captured from different human TTTS cases. The total duration of these videos was 5551 s (138,780 frames). To test the robustness of the proposed approach, we perform 7-fold cross-validation where each video is treated as a hold-out or test set and training is performed using the remaining videos.
FetNet achieved superior performance compared to the existing CNN-based methods and provided improved inference because of the spatio-temporal information modelling. Online testing of FetNet, using a Tesla V100-DGXS-32GB GPU, achieved a frame rate of 114 fps. These results show that our method could potentially provide a real-time solution for CAI and automating occlusion and photocoagulation identification during fetoscopic procedures.
羊膜镜激光光凝术是一种治疗双胎输血综合征(TTTS)的微创手术。通过使用插入羊膜腔的透镜/光纤镜,可以识别和消融异常的胎盘血管吻合,以调节两个胎儿的血流。由于胎儿的存在和低可见度导致有限的视野,使得难以识别所有的血管吻合。自动计算机辅助技术可以更好地了解手术过程中的解剖结构,实现安全的激光光凝,并有助于改善羊膜镜视频的镶嵌。
我们提出了 FetNet,这是一种结合卷积神经网络(CNN)和长短时记忆(LSTM)递归神经网络的架构,用于胎儿镜事件的时空识别。我们对现有的 CNN 架构进行了空间特征提取,并将其与 LSTM 网络集成,实现端到端的时空推断。在模型训练过程中,我们引入了差分学习率,以有效地利用预先训练的 CNN 权重。这可能支持胎儿镜激光光凝中的计算机辅助干预(CAI)。
我们使用来自不同 TTTS 人类病例的 7 个体内胎儿镜视频对我们的方法进行了定量评估。这些视频的总时长为 5551 秒(138780 帧)。为了测试所提出方法的鲁棒性,我们进行了 7 折交叉验证,其中每个视频都作为一个保留或测试集,使用其余视频进行训练。
与现有的基于 CNN 的方法相比,FetNet 表现出色,并由于时空信息建模而提供了改进的推断。使用 Tesla V100-DGXS-32GB GPU 对 FetNet 进行在线测试,实现了 114 fps 的帧率。这些结果表明,我们的方法有可能为 CAI 提供实时解决方案,并实现胎儿镜手术中闭塞和光凝识别的自动化。