Suppr超能文献

人工智能在妇产科期刊中的应用:系统评价。

Contributions of Artificial Intelligence Reported in Obstetrics and Gynecology Journals: Systematic Review.

机构信息

Fetal Medicine Department, Armand Trousseau University Hospital, Sorbonne University, Paris, France.

Laboratory in Medical Informatics and Knowledge Engineering in e-Health, Institut National de la Santé et de la Recherche Médicale, Sorbonne University, Paris, France.

出版信息

J Med Internet Res. 2022 Apr 20;24(4):e35465. doi: 10.2196/35465.

Abstract

BACKGROUND

The applications of artificial intelligence (AI) processes have grown significantly in all medical disciplines during the last decades. Two main types of AI have been applied in medicine: symbolic AI (eg, knowledge base and ontologies) and nonsymbolic AI (eg, machine learning and artificial neural networks). Consequently, AI has also been applied across most obstetrics and gynecology (OB/GYN) domains, including general obstetrics, gynecology surgery, fetal ultrasound, and assisted reproductive medicine, among others.

OBJECTIVE

The aim of this study was to provide a systematic review to establish the actual contributions of AI reported in OB/GYN discipline journals.

METHODS

The PubMed database was searched for citations indexed with "artificial intelligence" and at least one of the following medical subject heading (MeSH) terms between January 1, 2000, and April 30, 2020: "obstetrics"; "gynecology"; "reproductive techniques, assisted"; or "pregnancy." All publications in OB/GYN core disciplines journals were considered. The selection of journals was based on disciplines defined in Web of Science. The publications were excluded if no AI process was used in the study. Review, editorial, and commentary articles were also excluded. The study analysis comprised (1) classification of publications into OB/GYN domains, (2) description of AI methods, (3) description of AI algorithms, (4) description of data sets, (5) description of AI contributions, and (6) description of the validation of the AI process.

RESULTS

The PubMed search retrieved 579 citations and 66 publications met the selection criteria. All OB/GYN subdomains were covered: obstetrics (41%, 27/66), gynecology (3%, 2/66), assisted reproductive medicine (33%, 22/66), early pregnancy (2%, 1/66), and fetal medicine (21%, 14/66). Both machine learning methods (39/66) and knowledge base methods (25/66) were represented. Machine learning used imaging, numerical, and clinical data sets. Knowledge base methods used mostly omics data sets. The actual contributions of AI were method/algorithm development (53%, 35/66), hypothesis generation (42%, 28/66), or software development (3%, 2/66). Validation was performed on one data set (86%, 57/66) and no external validation was reported. We observed a general rising trend in publications related to AI in OB/GYN over the last two decades. Most of these publications (82%, 54/66) remain out of the scope of the usual OB/GYN journals.

CONCLUSIONS

In OB/GYN discipline journals, mostly preliminary work (eg, proof-of-concept algorithm or method) in AI applied to this discipline is reported and clinical validation remains an unmet prerequisite. Improvement driven by new AI research guidelines is expected. However, these guidelines are covering only a part of AI approaches (nonsymbolic) reported in this review; hence, updates need to be considered.

摘要

背景

在过去的几十年中,人工智能(AI)在所有医学学科中的应用都有了显著的增长。AI 在医学中有两种主要类型的应用:符号 AI(例如,知识库和本体)和非符号 AI(例如,机器学习和人工神经网络)。因此,AI 也已经应用于大多数妇产科(OB/GYN)领域,包括普通产科、妇科手术、胎儿超声和辅助生殖医学等。

目的

本研究旨在提供一个系统的综述,以确定 AI 在 OB/GYN 学科期刊中报告的实际贡献。

方法

在 2000 年 1 月 1 日至 2020 年 4 月 30 日期间,使用 PubMed 数据库搜索索引为“人工智能”和以下至少一个医学主题词(MeSH)术语的引文:“产科”;“妇科”;“辅助生殖技术”;或“妊娠”。考虑了所有在 OB/GYN 核心学科期刊上发表的出版物。期刊的选择基于 Web of Science 中定义的学科。如果研究中未使用 AI 流程,则排除该出版物。综述、社论和评论文章也被排除在外。该研究分析包括:(1)将出版物分类为 OB/GYN 领域,(2)描述 AI 方法,(3)描述 AI 算法,(4)描述数据集,(5)描述 AI 贡献,(6)描述 AI 流程的验证。

结果

通过 PubMed 搜索检索到 579 条引文,有 66 篇出版物符合选择标准。涵盖了所有 OB/GYN 亚领域:产科(41%,27/66)、妇科(3%,2/66)、辅助生殖医学(33%,22/66)、早期妊娠(2%,1/66)和胎儿医学(21%,14/66)。都代表了机器学习方法(39/66)和知识库方法(25/66)。机器学习使用了成像、数值和临床数据集。知识库方法主要使用了组学数据集。AI 的实际贡献是方法/算法的开发(53%,35/66)、假设的产生(42%,28/66)或软件开发(3%,2/66)。对一个数据集(86%,57/66)进行了验证,并且没有报告外部验证。我们观察到过去二十年中与 OB/GYN 相关的 AI 出版物呈总体上升趋势。这些出版物中的大多数(82%,54/66)仍然不在 OB/GYN 期刊的通常范围内。

结论

在 OB/GYN 学科期刊中,主要报告了该学科应用的 AI 的初步工作(例如,概念验证算法或方法),并且临床验证仍然是一个未满足的前提条件。预计将由新的 AI 研究指南驱动改进。然而,这些指南仅涵盖了本综述中报告的 AI 方法(非符号)的一部分;因此,需要考虑更新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db4c/9069308/b57100c22800/jmir_v24i4e35465_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验