Ivanov Maxim V, Reid Scott A, Rathore Rajendra
Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States.
J Phys Chem Lett. 2018 Jul 19;9(14):3978-3986. doi: 10.1021/acs.jpclett.8b01093. Epub 2018 Jul 5.
Since the first application of frontier molecular orbitals (FMOs) to rationalize stereospecificity of pericyclic reactions, FMOs have remained at the forefront of chemical theory. Yet, the practical application of FMOs in the rational design and synthesis of novel charge transfer materials remains under-appreciated. In this Perspective, we demonstrate that molecular orbital theory is a powerful and universal tool capable of rationalizing the observed redox/optoelectronic properties of various aromatic hydrocarbons in the context of their application as charge-transfer materials. Importantly, the inspection of FMOs can provide instantaneous insight into the interchromophoric electronic coupling and polaron delocalization in polychromophoric assemblies, and therefore is invaluable for the rational design and synthesis of novel materials with tailored properties.
自从首次应用前沿分子轨道(FMOs)来解释周环反应的立体专一性以来,FMOs一直处于化学理论的前沿。然而,FMOs在新型电荷转移材料的合理设计与合成中的实际应用仍未得到充分重视。在这篇展望文章中,我们证明分子轨道理论是一种强大且通用的工具,能够在各种芳烃作为电荷转移材料的应用背景下,合理解释其观察到的氧化还原/光电性质。重要的是,对FMOs的考察能够即时洞察多发色团组装体中的发色团间电子耦合和极化子离域,因此对于合理设计和合成具有定制性质的新型材料而言具有极高价值。