Suppr超能文献

肩部物理治疗运动识别:从智能手表学习惯性信号的机器学习。

Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch.

机构信息

Division of Orthopaedic Surgery, University of Toronto, Toronto, Canada.

出版信息

Physiol Meas. 2018 Jul 23;39(7):075007. doi: 10.1088/1361-6579/aacfd9.

Abstract

OBJECTIVE

Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch.

APPROACH

Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from an evidence-based rotator cuff physiotherapy protocol, while 6-axis inertial sensor data was collected from the active extremity. Within an activity recognition chain (ARC) framework, four supervised learning algorithms were trained and optimized to classify the exercises: k-nearest neighbor (k-NN), random forest (RF), support vector machine classifier (SVC), and a convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject.

MAIN RESULTS

Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9%).

SIGNIFICANCE

This proof of concept study demonstrates the technical feasibility of a smartwatch device and supervised machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols.

摘要

目的

参与物理治疗计划被认为是成功保守治疗常见肩部疾病的最大预测因素之一。然而,这些方案的依从性往往很差,对于非监督家庭锻炼计划尤其如此。目前,在家庭环境中对依从性进行客观测量的工具有限。本研究的目的是开发并评估使用商业智能手表进行家庭肩部物理治疗监测的潜力。

方法

20 名健康的成年受试者无先前肩部疾病,进行了来自循证肩袖物理治疗方案的七项运动,同时从活动肢体收集 6 轴惯性传感器数据。在活动识别链 (ARC) 框架内,训练和优化了四种监督学习算法来对运动进行分类:k-最近邻 (k-NN)、随机森林 (RF)、支持向量机分类器 (SVC) 和卷积递归神经网络 (CRNN)。使用 5 折交叉验证分层首先按时间然后按受试者评估算法性能。

主要结果

所有算法在时间分层交叉验证中的分类准确率均高于 94%,CRNN 算法的性能最佳(99.4%)。受试者分层交叉验证评估了在未见受试者上的分类器性能,准确率再次降低,CRNN 表现最佳(88.9%)。

意义

这项概念验证研究证明了智能手表设备和监督机器学习方法在更轻松地监测和评估家庭肩部物理治疗运动方案依从性方面的技术可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验