Suppr超能文献

用于肩袖损伤病理中肩部物理治疗的智能手表依从性跟踪:一项纵向队列研究方案

Adherence Tracking With Smart Watches for Shoulder Physiotherapy in Rotator Cuff Pathology: Protocol for a Longitudinal Cohort Study.

作者信息

Burns David, Razmjou Helen, Shaw James, Richards Robin, McLachlin Stewart, Hardisty Michael, Henry Patrick, Whyne Cari

机构信息

Division of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada.

Holland Bone and Joint Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.

出版信息

JMIR Res Protoc. 2020 Jul 5;9(7):e17841. doi: 10.2196/17841.

Abstract

BACKGROUND

Physiotherapy is essential for the successful rehabilitation of common shoulder injuries and following shoulder surgery. Patients may receive some training and supervision for shoulder physiotherapy through private pay or private insurance, but they are typically responsible for performing most of their physiotherapy independently at home. It is unknown how often patients perform their home exercises and if these exercises are performed correctly without supervision. There are no established tools for measuring this. It is, therefore, unclear if the full benefit of shoulder physiotherapy treatments is being realized.

OBJECTIVE

The proposed research will (1) validate a smartwatch and machine learning (ML) approach for evaluating adherence to shoulder exercise participation and technique in a clinical patient population with rotator cuff pathology; (2) quantify the rate of home physiotherapy adherence, determine the effects of adherence on recovery, and identify barriers to successful adherence; and (3) develop and pilot test an ethically conscious adherence-driven rehabilitation program that individualizes patient care based on their capacity to effectively participate in their home physiotherapy.

METHODS

This research will be conducted in 2 phases. The first phase is a prospective longitudinal cohort study, involving 120 patients undergoing physiotherapy for rotator cuff pathology. Patients will be issued a smartwatch that will record 9-axis inertial sensor data while they perform physiotherapy exercises both in the clinic and in the home setting. The data collected in the clinic under supervision will be used to train and validate our ML algorithms that classify shoulder physiotherapy exercise. The validated algorithms will then be used to assess home physiotherapy adherence from the inertial data collected at home. Validated outcome measures, including the Disabilities of the Arm, Shoulder, and Hand questionnaire; Numeric Pain Rating Scale; range of motion; shoulder strength; and work status, will be collected pretreatment, monthly through treatment, and at a final follow-up of 12 months. We will then relate improvement in patient outcomes to measured physiotherapy adherence and patient baseline variables in univariate and multivariate analyses. The second phase of this research will involve the evaluation of a novel rehabilitation program in a cohort of 20 patients. The program will promote patient physiotherapy engagement via the developed technology and support adherence-driven care decisions.

RESULTS

As of December 2019, 71 patients were screened for enrollment in the noninterventional validation phase of this study; 65 patients met the inclusion and exclusion criteria. Of these, 46 patients consented and 19 declined to participate in the study. Only 2 patients de-enrolled from the study and data collection is ongoing for the remaining 44.

CONCLUSIONS

This study will provide new and important insights into shoulder physiotherapy adherence, the relationship between adherence and recovery, barriers to better adherence, and methods for addressing them.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/17841.

摘要

背景

物理治疗对于常见肩部损伤的成功康复以及肩部手术后的康复至关重要。患者可以通过自费或私人保险接受一些肩部物理治疗的培训和监督,但他们通常要负责在家中独立完成大部分物理治疗。目前尚不清楚患者进行家庭锻炼的频率,以及这些锻炼在无人监督的情况下是否正确进行。目前还没有既定的工具来衡量这一点。因此,尚不清楚肩部物理治疗是否能充分发挥其益处。

目的

本研究将(1)验证一种智能手表和机器学习(ML)方法,用于评估患有肩袖病理的临床患者群体对肩部锻炼参与度和技术的依从性;(2)量化家庭物理治疗的依从率,确定依从性对恢复的影响,并识别成功依从的障碍;(3)开发并进行一项具有伦理意识的依从性驱动的康复计划试点测试,该计划根据患者有效参与家庭物理治疗的能力对患者护理进行个性化定制。

方法

本研究将分两个阶段进行。第一阶段是一项前瞻性纵向队列研究,涉及120名因肩袖病理接受物理治疗的患者。将为患者发放智能手表,在他们在诊所和家中进行物理治疗锻炼时记录9轴惯性传感器数据。在监督下在诊所收集的数据将用于训练和验证我们用于对肩部物理治疗锻炼进行分类的ML算法。然后,经过验证的算法将用于根据在家中收集的惯性数据评估家庭物理治疗的依从性。将在治疗前、治疗期间每月以及12个月的最终随访时收集经过验证的结局指标,包括手臂、肩部和手部残疾问卷;数字疼痛评分量表;活动范围;肩部力量;以及工作状态。然后,我们将在单变量和多变量分析中将患者结局的改善与测量的物理治疗依从性和患者基线变量相关联。本研究的第二阶段将涉及对20名患者的队列进行一项新型康复计划的评估。该计划将通过开发的技术促进患者的物理治疗参与,并支持依从性驱动的护理决策。

结果

截至2019年12月,71名患者被筛选纳入本研究的非干预性验证阶段;65名患者符合纳入和排除标准。其中,46名患者同意参与,19名患者拒绝参与研究。只有2名患者退出研究,其余44名患者的数据收集正在进行中。

结论

本研究将为肩部物理治疗依从性、依从性与恢复之间的关系、更好依从性的障碍以及解决这些障碍的方法提供新的重要见解。

国际注册报告识别码(IRRID):DERR1-10.2196/17841。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9528/7381014/8bb3302c532c/resprot_v9i7e17841_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验