Suppr超能文献

利用惯性传感器和机器学习检测腰部物理治疗运动:算法开发与验证

Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.

作者信息

Alfakir Abdalrahman, Arrowsmith Colin, Burns David, Razmjou Helen, Hardisty Michael, Whyne Cari

机构信息

Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON, Canada.

Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.

出版信息

JMIR Rehabil Assist Technol. 2022 Aug 23;9(3):e38689. doi: 10.2196/38689.

Abstract

BACKGROUND

Physiotherapy is a critical element in the successful conservative management of low back pain (LBP). A gold standard for quantitatively measuring physiotherapy participation is crucial to understanding physiotherapy adherence in managing recovery from LBP.

OBJECTIVE

This study aimed to develop and evaluate a system with wearable inertial sensors to objectively detect the performance of unsupervised exercises for LBP comprising movement in multiple planes and sitting postures.

METHODS

A quantitative classification design was used within a machine learning framework to detect exercise performance and posture in a cohort of healthy participants. A set of 8 inertial sensors were placed on the participants, and data were acquired as they performed 7 McKenzie low back exercises and 3 sitting posture positions. Engineered time series features were extracted from the data and used to train 9 models by using a 6-fold cross-validation approach, from which the best 2 models were selected for further study. In addition, a convolutional neural network was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed the most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and best performing algorithms for exercise and posture classification. The final models were evaluated using the F score in a 10-fold cross-validation approach.

RESULTS

In total, 19 healthy adults with no history of LBP each completed at least one full session of exercises and postures. Random forest and XGBoost (extreme gradient boosting) models performed the best out of the initial set of 9 engineered feature models. The optimal hardware configuration was identified as a 3-sensor setup-lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XGBoost model achieved the highest exercise (F score: mean 0.94, SD 0.03) and posture (F score: mean 0.90, SD 0.11) classification scores. The convolutional neural network achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F score: mean 0.94, SD 0.02) and the accelerometer channel alone for posture classification (F score: mean 0.88, SD 0.07).

CONCLUSIONS

This study demonstrates the potential of a 3-sensor lower body wearable solution (eg, smart pants) that can identify exercises in multiple planes and proper sitting postures, which is suitable for the treatment of LBP. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring.

摘要

背景

物理治疗是成功保守治疗下腰痛(LBP)的关键要素。定量测量物理治疗参与度的金标准对于理解物理治疗在LBP恢复管理中的依从性至关重要。

目的

本研究旨在开发和评估一种带有可穿戴惯性传感器的系统,以客观检测针对LBP的无监督运动的执行情况,这些运动包括多个平面的动作和坐姿。

方法

在机器学习框架内采用定量分类设计,以检测一组健康参与者的运动表现和姿势。在参与者身上放置一组8个惯性传感器,并在他们进行7项麦肯齐下背部运动和3种坐姿时采集数据。从数据中提取工程时间序列特征,并使用6折交叉验证方法训练9个模型,从中选择最佳的2个模型进行进一步研究。此外,直接在时间序列数据上训练卷积神经网络。进行特征重要性分析,以确定对模型贡献最大的传感器位置和通道。最后,在超参数网格搜索中纳入传感器位置和通道的一个子集,以确定用于运动和姿势分类的最佳传感器配置和性能最佳的算法。使用F分数在10折交叉验证方法中评估最终模型。

结果

共有19名无LBP病史的健康成年人每人至少完成了一次完整的运动和姿势测试。在最初的9个工程特征模型中,随机森林和XGBoost(极端梯度提升)模型表现最佳。最佳硬件配置被确定为一种3传感器设置——下背部、左大腿和右踝部传感器,带有加速度计、陀螺仪和磁力计通道。XGBoost模型在运动(F分数:平均值0.94,标准差0.03)和姿势(F分数:平均值0.90,标准差0.11)分类中获得了最高分数。卷积神经网络在相同的传感器位置上取得了类似的结果,仅使用加速度计和陀螺仪通道进行运动分类(F分数:平均值0.94,标准差0.02),仅使用加速度计通道进行姿势分类(F分数:平均值0.88,标准差0.07)。

结论

本研究证明了一种3传感器下半身可穿戴解决方案(如智能裤子)的潜力,该方案可以识别多个平面的运动和正确的坐姿,适用于LBP的治疗。这项技术有可能通过促进定量反馈、早期问题诊断和可能的远程监测来提高LBP康复的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a580/9449825/34cac4e9bd91/rehab_v9i3e38689_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验