Applied Proteomics, Inc., 3545 John Hopkins Court, San Diego, CA 92121, USA.
Applied Proteomics, Inc., 3545 John Hopkins Court, San Diego, CA 92121, USA.
J Proteomics. 2018 Sep 15;187:80-92. doi: 10.1016/j.jprot.2018.06.013. Epub 2018 Jun 25.
Over the past 20 years, mass spectrometry (MS) has emerged as a dynamic tool for proteomics biomarker discovery. However, published MS biomarker candidates often do not translate to the clinic, failing during attempts at independent replication. The cause can be shortcomings in study design, sample quality, assay quantitation, and/or quality/process control. To address these shortcomings, we developed an MS workflow in accordance with Tier 2 measurement requirements for targeted peptides, defined by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) "fit-for-purpose" approach, using dynamic multiple reaction monitoring (dMRM), which measures specific peptide transitions during predefined retention time (RT) windows. We describe the development of a robust multipex dMRM assay measuring 641 proteotypic peptides from 392 colorectal cancer (CRC) related proteins, and the procedures to track and handle sample processing and instrument variation over a four-month study, during which the assay measured blood samples from 1045 patients with CRC symptoms. After data collection, transitions were filtered by signal quality metrics before entering receiver operating characteristic (ROC) analysis. The results demonstrated CRC signal carried by 127 proteins in the symptomatic population. The workflow might be further developed to build Tier 1 assays for clinical tests identifying symptomatic individuals at elevated risk of CRC.
We developed a dMRM MS method with the rigor of a Tier 2 assay as defined by the CPTAC 'fit for purpose approach' [1]. Using quality and process control procedures, the assay was used to quantify 641 proteotypic peptides representing 392 CRC-related proteins in plasma from 1045 CRC-symptomatic patients. To our knowledge, this is the largest MRM method applied to the largest study to date. The results showed that 127 of the proteins carried univariate CRC signal in the symptomatic population. This large number of single biomarkers bodes well for future development of multivariate classifiers to distinguish CRC in the symptomatic population.
在过去的 20 年中,质谱(MS)已成为蛋白质组学生物标志物发现的有力工具。然而,发表的 MS 生物标志物候选物通常无法在临床上转化,在独立复制尝试中失败。原因可能是研究设计、样本质量、检测定量和/或质量/过程控制的缺陷。为了解决这些缺陷,我们根据临床蛋白质组肿瘤分析联盟(CPTAC)“适用目的”方法定义的靶向肽的二级测量要求,开发了一种 MS 工作流程,使用动态多重反应监测(dMRM),在预定义保留时间(RT)窗口期间测量特定肽的特定肽转换。我们描述了一种稳健的多plex dMRM 测定法的开发,该测定法可测量来自 392 种结直肠癌(CRC)相关蛋白的 641 种蛋白肽,并描述了在为期四个月的研究中跟踪和处理样本处理和仪器变异的过程,在此期间,该测定法测量了 1045 例有 CRC 症状的患者的血液样本。数据收集后,通过信号质量指标对转换进行过滤,然后再进入接收者操作特征(ROC)分析。结果表明,在有症状的人群中,CRC 信号由 127 种蛋白质携带。该工作流程可以进一步开发,以建立用于临床测试的一级测定法,用于识别有 CRC 高风险的有症状个体。
我们开发了一种 dMRM MS 方法,该方法具有 CPTAC“适用目的”方法定义的二级测定法的严格性[1]。使用质量和过程控制程序,该测定法用于定量来自 1045 例有 CRC 症状的患者的血浆中的 641 种代表 392 种 CRC 相关蛋白的蛋白肽。据我们所知,这是迄今为止应用于最大研究的最大 MRM 方法。结果表明,在有症状的人群中,有 127 种蛋白携带单变量 CRC 信号。如此多的单一生物标志物预示着未来开发用于区分有症状人群中 CRC 的多元分类器的前景良好。