Béchara Rami, Hamadeh Hamzeh, Mirgaux Olivier, Patisson Fabrice
Institut Jean Lamour, CNRS, Université de Lorraine, 54011 Nancy, France.
Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures (DAMAS), Université de Lorraine, 57073 Metz, France.
Materials (Basel). 2018 Jun 27;11(7):1094. doi: 10.3390/ma11071094.
Iron ore direct reduction is an attractive alternative steelmaking process in the context of greenhouse gas mitigation. To simulate the process and explore possible optimization, we developed a systemic, multiscale process model. The reduction of the iron ore pellets is described using a specific grain model, reflecting the transformations from hematite to iron. The shaft furnace is modeled as a set of interconnected one-dimensional zones into which the principal chemical reactions (3-step reduction, methane reforming, Boudouard and water gas shift) are accounted for with their kinetics. The previous models are finally integrated in a global, plant-scale, model using the Aspen Plus software. The reformer, scrubber, and heat exchanger are included. Results at the shaft furnace scale enlighten the role of the different zones according to the physico-chemical phenomena occurring. At the plant scale, we demonstrate the capabilities of the model to investigate new operating conditions leading to lower CO₂ emissions.
在温室气体减排的背景下,铁矿石直接还原是一种颇具吸引力的替代炼钢工艺。为了模拟该工艺并探索可能的优化方案,我们开发了一个系统的多尺度工艺模型。使用特定的颗粒模型来描述铁矿石球团的还原过程,该模型反映了从赤铁矿到铁的转变。竖炉被建模为一组相互连接的一维区域,主要化学反应(三步还原、甲烷重整、布多尔反应和水煤气变换)的动力学被纳入其中。先前的模型最终使用Aspen Plus软件集成到一个全局的工厂规模模型中。该模型包括重整器、洗涤器和热交换器。竖炉尺度的结果根据所发生的物理化学现象揭示了不同区域的作用。在工厂规模上,我们展示了该模型研究导致更低二氧化碳排放的新操作条件的能力。